Description
DSCOVR_EPIC_L2_AER_03 is the Deep Space Climate Observatory (DSCOVR) Enhanced Polychromatic Imaging Camera (EPIC) Level 2 UV Aerosol Version 3 data product. Observations for this data product are at 340 and 388 nm and are used to derive near UV (ultraviolet) aerosol properties. The EPIC aerosol retrieval algorithm (EPICAERUV) uses a set of aerosol models to account for the presence of carbonaceous aerosols from biomass burning and wildfires (BIO), desert dust (DST), and sulfate-based (SLF) aerosols. These aerosol models are identical to those assumed in the OMI (Ozone Monitoring Instrument) algorithm (Torres et al., 2007; Jethva and Torres, 2011).
Aerosol data products generated by the EPICAERUV algorithm are aerosol extinction optical depth (AOD) and single scattering albedo (SSA) at 340, 388, and 500 nm for clear sky conditions. AOD of absorbing aerosols above clouds is also reported (Jethva et al., 2018). In addition, the UV Aerosol Index (UVAI) is calculated from 340 and 388 nm radiances for all sky conditions. AOD is a dimensionless measure of the extinction of light y aerosols due to the combined effect of scattering and absorption. SSA represents the fraction of extinction solely due to aerosol scattering effects. The AI is simply a residual parameter that quantifies the difference in spectral dependence between measured and calculated near UV radiances, assuming a purely molecular atmosphere. Because most of the observed positive residuals are associated with the presence of absorbing aerosols, this parameter is commonly known as the UV Absorbing Aerosol Index. EPIC-derived aerosol parameters are reported at a 10 km (nadir) resolution.
Version Description
Product Summary
Citation
Citation is critically important for dataset documentation and discovery. This dataset is openly shared, without restriction, in accordance with the EOSDIS Data Use and Citation Guidance.