N: 29.76 S: 28.72 E: -90.19 W: -91.86
TABLE OF CONTENTS
Description
This dataset provides input data and model code to run the Marsh Accretion Rates (NUMAR) process model used to predict soil accretion rates and chemical properties for marsh sites in the Mississippi River Delta. NUMAR is a modification of the NUMAN model by Chen and Twilley (1999) that was developed for mangrove environments. This dataset provides Python code, input data in comma separated values (CSV) format, and documentation for installing and running the model in Portable Document Format (PDF).
Product Summary
Platforms
COMPUTERS
Instruments
Computer
Spatial Extent
Geographic Region
LOUISIANA
Coordinate System
CARTESIAN
Granule Spatial Representation
CARTESIAN
Temporal Extent
2020-01-01 to 2022-12-31
Data Partner
THE OAK RIDGE NATIONAL LABORATORY (ORNL) DISTRIBUTED ACTIVE ARCHIVE CENTER (DAAC) (ORNL_DAAC)
Concept ID
C3235699055-ORNL_CLOUD
Data State
COMPLETE
Number of Files/Granules
3
Processing Level
4
Published
Updated
Science Keywords
Citation
Citation is critically important for dataset documentation and discovery. This dataset is openly shared, without restriction, in accordance with the EOSDIS Data Use and Citation Guidance.
Copy Citation
Citation Copied
Twilley, R., Biswas, P., Rovai, A., Christensen, A. L., Cassaway, A. F., Vargas-Lopez, I. A., & Kameshwar, S. (2024). Delta-X: NUMAR Predictive Model for Marsh Accretion Rates and Chemical Properties (Version 1). ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/2354 Date Accessed: 2025-12-14
Twilley, R., P. Biswas, A. Rovai, A.L. Christensen, A.F. Cassaway, I.A. Vargas-Lopez, and S. Kameshwar. “Delta-X: NUMAR Predictive Model for Marsh Accretion Rates and Chemical Properties.” ORNL Distributed Active Archive Center, January 1, 2024. doi:10.3334/ORNLDAAC/2354. Date Accessed: 2025-12-14
Twilley, R., et al. Delta-X: NUMAR Predictive Model for Marsh Accretion Rates and Chemical Properties. 1, ORNL Distributed Active Archive Center, 1 Jan. 2024, doi:10.3334/ORNLDAAC/2354. Date Accessed: 2025-12-14
TABLE OF CONTENTS