

Ice Breaker

Ice Breaker Questions

- What's something you're passionate about outside of work?
- What inspired you to pursue your current career path?
- What's the most interesting place you've ever been to?
- If you could switch jobs with anyone in the company for a week, who would it be?
- Who would you choose if you could pick one person, living or dead, to have dinner with?
- What professional opportunity are you looking forward to in the next three months?

Earth Observations in Support of Insurance & Finance Sector Decision-MakingEarth Observations and Data for Monitoring Wildfires

Amita Mehta (NASA GSFC, UMBC), Sean McCartney (NASA GSFC, SSAI), Erika Podest (NASA, JPL)

November 12, 2025

Learning Objectives

- By the end of this presentation attendees will be able to:
 - Identify and analyze data products from Earth observations and Earth system models to assess pre-fire conditions.
 - Monitor active wildfire and burnt area using Earth observations.
 - Identify NASA webtools for monitoring wildfires.

Outline

m

- Overview of Earth observations data for monitoring pre-fire and active fire conditions.
- Demonstrations: Eaton Fire, Los Angeles County, January 2025
 - Monitor pre-fire hydrologic and vegetation conditions using GEE.
 - Monitor fire ignition and spread conditions.
- Monitor active fires using NASA webtools: <u>Worldview</u>, <u>FIRMS</u>
- Calculate Normalized Burn Ratio using GEE

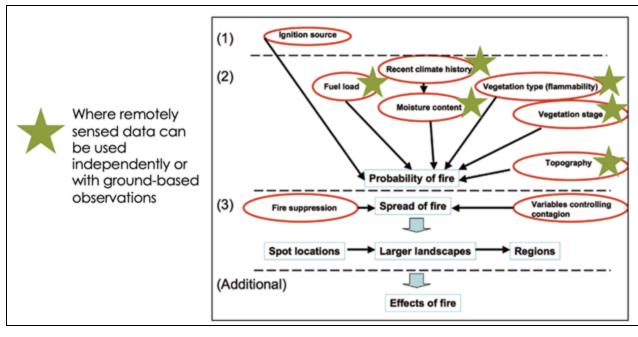
Overview of Earth Observations for Monitoring Wildfires

Factors Influencing Pre-fire Conditions, Fire Ignition, and Spread

m

- Precipitation
- Soil Moisture
- Vegetation
- Winds
- Surface temperature and humidity
- Lightning
- Topography

ARSET Wildfire Trainings



Credit: Salam2009

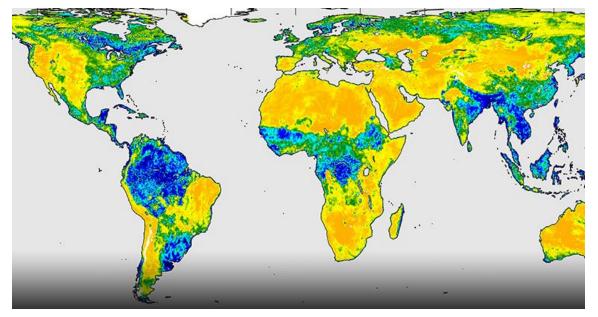
Pre-fire Risk Mapping

- The probability that a fire might start in a certain area.
- Risk is determined by compiling relevant factors that influence fire ignition and behavior.

Calculation of fire risk:
There are three aspects
to predicting fire: (1) the
probability of ignition; (2)
the biophysical influences
on fire, such as fuel load,
moisture content,
flammability of the
vegetation, and
topography; and (3) the
spread of fire once it gets
established.

Image Credit: Weinstein and Woodbury, USFS

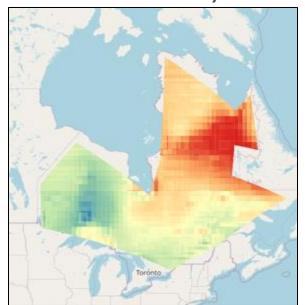
Comprehensive fire risk maps are challenging to produce due to the many factors that impact the probability of fire.

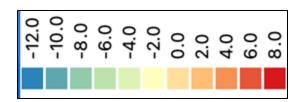

We first focus on pre-fire conditions by monitoring precipitation, soil moisture, fire fuel in a watershed.

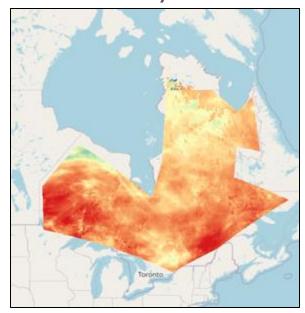
Earth Observations for Monitoring Pre-fire Risk

erry.

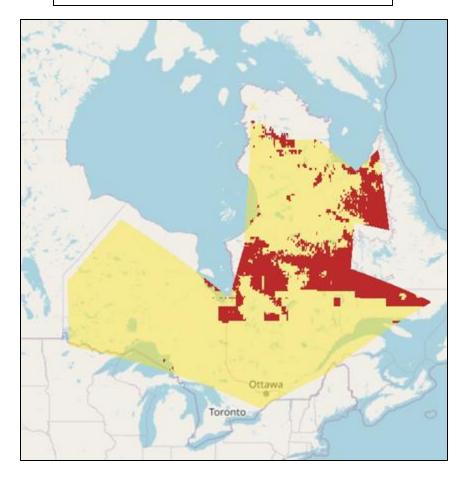
- Precipitation
 - GPM/IMERG
- Soil Moisture
 - SMAP/NLDAS
- Vegetation
 - Terra/Aqua/NPP/JPSS
- Surface temperature and humidity
 - MERRA-2




Credit: National Snow and Ice Data Center


Example: Fires in Quebec – June 2023

MERRA-2: Surface Skin Temperature
Anomalies for May 2023

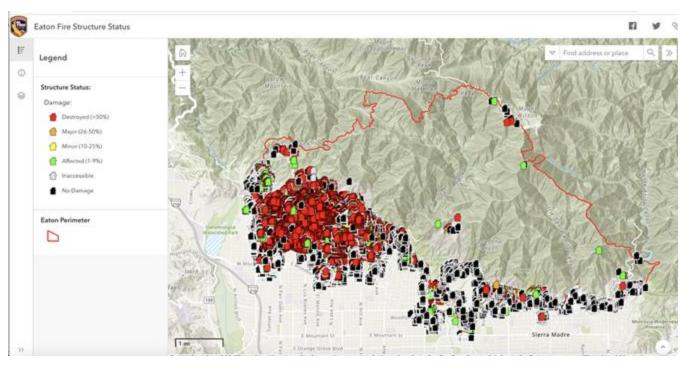


IMERG: Precipitation Anomalies for May 2023

Dry and Warm Anomalies Indicating Fire Risk

Note: Anomalies are calculated by subtracting 2001-2022 Mean quantities from May 2023.

Demonstration: Eaton Fire, January 2025


Examine Pre-fire Hydrologic Conditions and Fuel Availability Pre-fire Anomalies: Precipitation, Soil Moisture, Vegetation Index

Eaton Fire

m

- The Eaton Fire ignited in the hills of Eaton Canyon, near Altadena, on the evening of January 7, 2025.
- Around January 11, it had expanded to 57 square kilometers.
- The fire lasted for 24 days, destroyed approximately 9400 structures and caused 19 fatalities.

Eaton Fire Structure Status

Credit: CAL FIRE Forestry Maps

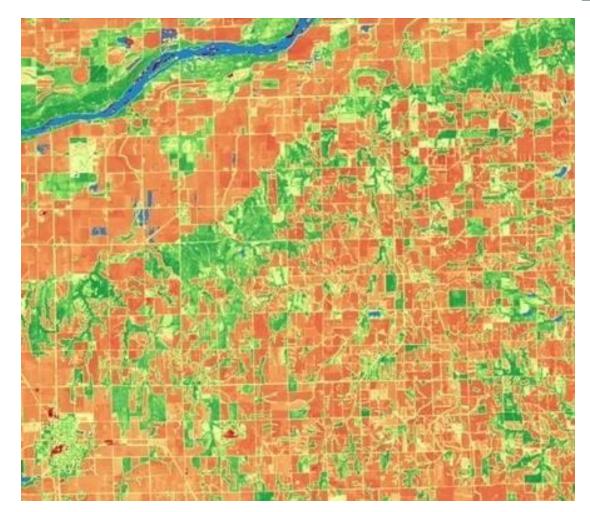
Source: CAL FIRE

Soil Moisture, Precipitation, Winds – Earth Observations for Fire Ignition and Spread

- Pre-fire Soil Moisture Anomalies (demo)
 - GEE Code: https://code.earthengine.google.com/5a18aff4133e075b00e572490dd48fe3
- Pre-fire Precipitation Anomalies (demo)
 - GEE Code: https://code.earthengine.google.com/a463080a28460f4e48151d356c839299
- Pre-fire Winds (demo)
 - GEE Code: https://code.earthengine.google.com/a31a33d879c70326208584c95d760b18
- * Lightning
 - * Geostationary Lightning Mapper
- * ARSET: Introduction to Lightning Observations and Applications

Spectral Indices for Vegetation

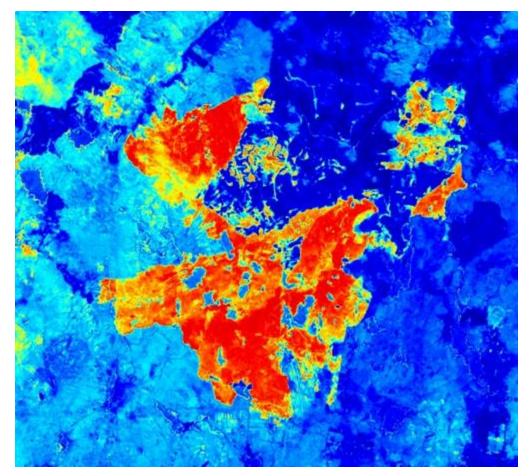
Learning Objectives


m

- By the end of this presentation attendees will be able to:
 - Recognize commonly used spectral indices for land applications
 - Acquire vegetation and fire index products from a variety of sources
 - Compute vegetation index anomalies over areas of interest
 - Identify fire indices that measure wildfire area and magnitude

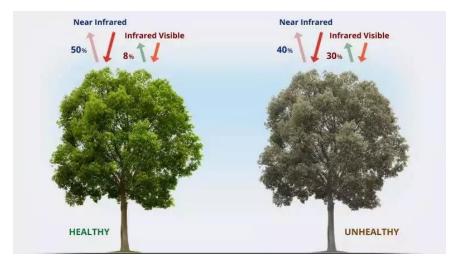
What is a Spectral Index?

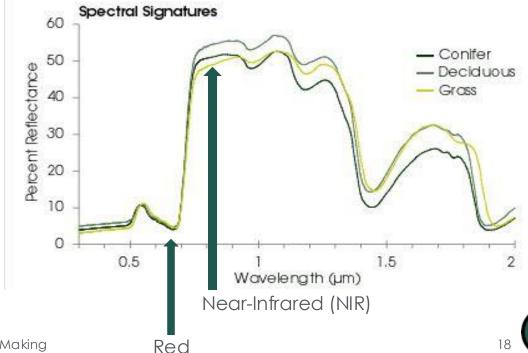
- A mathematical calculation performed on each pixel using values from multiple spectral bands of an image.
- Minimize atmospheric interference, instrument noise, and illumination variations for consistent spatial and temporal comparisons.
- Enable consistent comparisons across time and space, typically normalized between -1 and +1.
- Fundamental tools in remote sensing that transform complex multispectral data into meaningful, interpretable information about Earth's surface conditions and processes.



Applications of Spectral Indices

- Water quality, delineation, and flood mapping
- Vegetation health, phenology, decadal trends
- Geologic mapping
- Burned area mapping and fire severity
- Biophysical parameters (i.e., biomass)


Moisture Index of Wildfire (wildfire in red, orange)

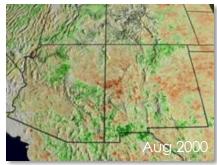


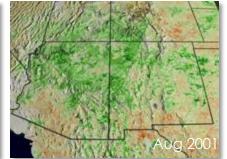
Normalized Difference Vegetation Index (NDVI)

- <u>NDVI</u> evaluates vegetation condition and chlorophyll content.
- Chlorophyll strongly absorbs visible light, and the cellular structure of leaves strongly reflects near-infrared light.
- NDVI values range from -1.0 to 1.0
 - -1.0 to 0.0: Water Bodies and Non-Vegetation
 - Values approaching 1 represent peak vegetation biomass
 - NDVI Formula:

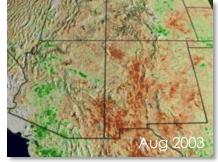
$$NDVI = \frac{(NIR - Red)}{(NIR + Red)}$$

NDVI Anomaly


m

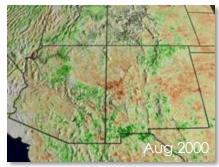

- Statistical measure comparing present vegetation health to long-term average
- Current measurement (day, month, year, etc.) minus reference period average
- Basic NDVI Anomaly (Interpretation):
 - Positive values = above normal vegetation
 - Zero = typical conditions for that time/place
 - Negative values = below normal vegetation

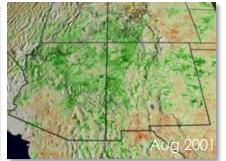

 $NDVI \ Anomaly = Current \ NDVI - Longterm \ Mean$

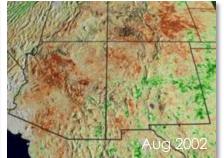

NDVI Anomalies in the Southwestern United States

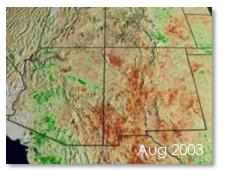
NDVI Anomaly

Standardized NDVI Anomaly (Z-Score)


$$Standardized\ NDVI\ Anomaly = \frac{Current\ NDVI - Longterm\ Mean}{Standard\ Deviation}$$


Percentage NDVI Anomaly


$$NDVI\ Percentage\ Anomaly = \frac{Current\ NDVI - Longterm\ Mean}{Longterm\ Mean} * 100$$


NDVI Anomalies in the Southwestern United States

Additional Vegetation Indices

Enhanced Vegetation Index (EVI)

- Can be used in place of NDVI to examine vegetation greenness.
- More sensitive in areas with dense vegetation, making it better for fuels assessment in dense forests.
- Adjusts for canopy background and some atmospheric conditions.

$$EVI = G * \left(\frac{(NIR-R)}{(NIR+C1*R-C2*B+L)}\right)$$

$$Constants$$

$$G = 2.5$$

$$C1 = 6$$

$$C2 = 7.5$$

$$L = 1$$

Soil Adjusted Vegetation Index (SAVI)

- Used to correct NDVI for the influence of soil brightness in areas where vegetative cover is low.
- Better index for areas with sparse vegetation and high bare soil coverage.
- Contains a soil brightness correction factor (L).

$$SAVI = \frac{\square (NIR - R)}{(NIR + R + L)} \square (1 + L)$$

Satellites and Sensors for Vegetation Indices

Landsat and Sentinel-2

Landsat 8 & 9

- Launched in 2013 and 2021
- Sensor: Operational Land Imager
 (OLI) & Thermal Infrared Sensor (TIRS)
- Multispectral: 30 and 100-meter pixel bands, 15-meter panchromatic band, 8-day revisit

Sentinel-2 a, b, c

- Launched in 2015, 2017, 2024
- Sensor: Multispectral Instrument (MSI)
- Multispectral: 10, 20, and 60-meter pixel bands, 2–5-day revisit

Vegetation-Based Fire Applications:

- Vegetation extent and type
- Vegetation stage and health: variety of vegetation indices, including NDVI, EVI, SAVI
- Vegetation moisture: NDWI

Image Credits: <u>USGS</u>, <u>ESA</u>

Landsat 8 & 9 – Spectral Bands

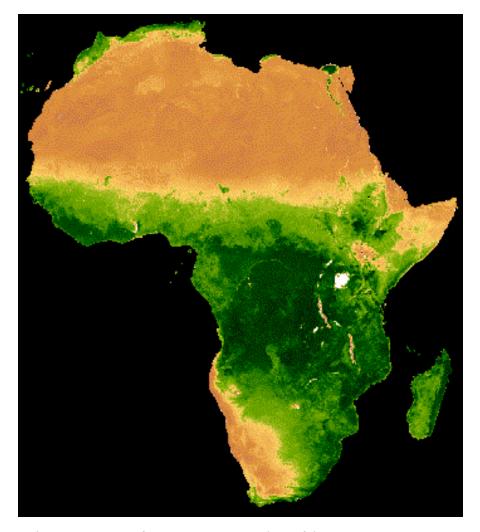
Landsat 8 & 9 OLI and TIRS Bands (µm)			Landsat 7 ETM+ Bands (µm)		
Band 1	30 m Coastal/Aerosol	0.43–.045			
Band 2	30 m Blue	0.45–.051	Band 1	30 m Blue	0.44-0.51
Band 3	30 m Green	0.53-0.60	Band 2	30 m Green	0.52-0.60
Band 4	30 m Red	0.63–0.68	Band 3	30 m Red	0.63–0.69
Band 5	30 m NIR	0.85–0.88	Band 4	30 m NIR	0.77–0.90
Band 6	30 m SWIR-1	1.57–1.65	Band 5	30 m SWIR-1	1.55–1.75
Band 10	100 m TIR-1	10.60–11.19	Band 6	60 m TIR	10.40–12.50
Band 11	100 m TIR-2	11.50–12.51			
Band 7	30 m SWIR-2	2.11–2.29	Band 7	30 m SWIR-2	2.08–2.35
Band 8	15 m Pan	0.5–0.68	Band 8	15 m Pan	0.52-0.90
Band 9	30 m Cirrus	1.36–1.38			

Sentinel-2 a, b, c – Spectral Bands

Sentinel-2 Bands Central Wavelength (nm)						
Band 1	60 m	Blue (Coastal and Aerosol)	442			
Band 2	10 m	Blue	492			
Band 3	10 m	Green	559			
Band 4	10 m	Red	665			
Band 5	20 m	Visible and Near Infrared (VNIR)	704			
Band 6	20 m	Visible and Near Infrared (VNIR)	739			
Band 7	20 m	Visible and Near Infrared (VNIR)	780			
Band 8	10 m	Visible and Near Infrared (VNIR)	833			
Band 8a	20 m	Visible and Near Infrared (VNIR)	864			
Band 9	60 m	Short Wave Infrared (SWIR)	943			
Band 10	60 m	Short Wave Infrared (SWIR)	1377			
Band 11	20 m	Short Wave Infrared (SWIR)	1610			
Band 12	20 m	Short Wave Infrared (SWIR)	2186			

Harmonized Landsat and Sentinel-2

- Harmonized Landsat and Sentinel-2 (HLS)
- Combines data from NASA's Landsat 8/9 and ESA's Sentinel-2A/B/C satellites to create a unified, analysis-ready dataset.
- **Increased temporal frequency**: 2–3-day revisit globally
- **Analysis-ready data:** Pre-processed surface reflectance
- HLSL30 (Landsat)
 - Source: Landsat 8/9 OLI data
 - Resolution: 30m
 - Processing: Surface reflectance, atmospheric correction
- HLSS30 (Sentinel-2)
 - Source: Sentinel-2A/B/C MSI data
 - Resolution: 30m (resampled from native resolution)
 - Processing: Surface reflectance, atmospheric correction
- User's Guide

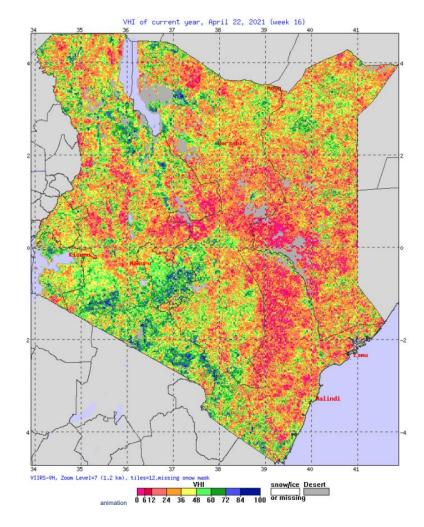


Credit: NASA Earth Observatory

Terra & Aqua

- Sensor: Moderate Resolution Imaging Spectroradiometer (MODIS)
- Vegetation-Based Fire Applications:
 - Vegetation Stage and Health: NDVI, EVI
 - High Temporal Resolution Phenology
- Spatial Resolution:
 - 250 m, 500 m, 1 km
- Temporal Resolution:
 - Daily, 8-day, 16-day, monthly, quarterly, yearly
 - 2000–present
- Spectral Coverage:
 - 36 bands

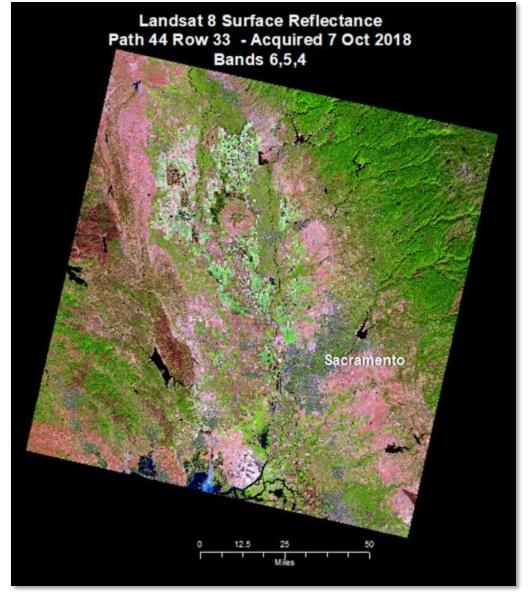
Time lapse of MODIS NDVI in Africa.


Credit: Google Earth Engine Developers

Suomi National Polar-orbiting Partnership (NPP)

- Sensor: Visible Infrared Imaging Radiometer Suite (<u>VIIRS</u>)
- Vegetation-Based Fire Applications:
 - Vegetation Health: VIIRS Vegetation products include Vegetation Condition Index, Temperature Condition Index, and Vegetation Health Index
- Launched in 2012; collects visible and infrared imagery
- Daily temporal resolution and global coverage
- Spatial Resolution:
 - 5 moderate resolution bands: 375 m
 - 16 coarse resolution bands: 750 m

Credit: NOAA NESDIS



Vegetation Index Data Products

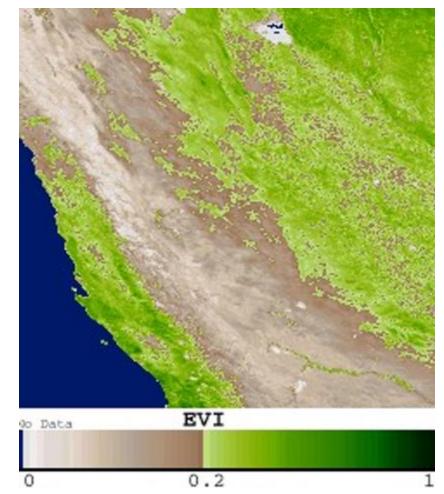
Landsat NDVI and EVI Products

- Temporal Resolution: 8-day & 16-day composites
- Spatial Resolution: 30 m
- Multiple products available: NDVI, EVI, SAVI, NDMI, NBR
- Data access:
 - USGS EROS
 - NASA Webtools
 - Google Earth Engine
 - NDVI
 - EVI

Animation of the multiple Landsat vegetation indices. Credit: USGS/NASA

HLS Spectral Data Products

- Temporal Resolution: 2–3-day
- Spatial rresolution: 30 m
- Multiple products available: NDVI, EVI, SAVI, NDMI, NBR
- Data access:
 - NASA Earthdata Search
 - Common Metadata Repository (CMR)
 - Google Earth Engine
 - HLSL30
 - HLSS30
- NASA GitHub



Credit: NASA

MODIS NDVI and EVI Products

- 16-day and monthly composite
- 250 m, 500 m, and 1 km spatial resolutions
- Retrieved from daily, atmosphere-corrected, bidirectional surface reflectance
- Collection Names: <u>MOD13 (Terra) and MYD13 (Aqua)</u>
 - Multiple subsets based on spatial resolution
- Data access:
 - NASA Webtools
 - Earthdata Search
 - Google Earth Engine

MODIS EVI from April 2020 of the western coast of Africa.

Credit: <u>USGS/NASA</u>

VIIRS NDVI and EVI Products

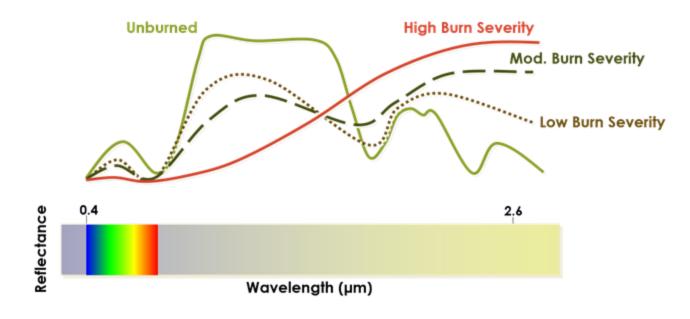
- 16-day Composites of NDVI, EVI, and EVI2
- 500 m, 1 km ,and 0.05-degree Resolutions
- Algorithm selects the best available pixel in a 16-day window
- Collection Name: <u>VNP13 & JP113</u>
 - Multiple subsets based on spatial resolution
 - User Guide
- Data access:
 - NASA Webtools
 - Earthdata Search
 - Google Earth Engine

NDVI composite over continental US from Suomi-NPP VIIRS Credit: USGS

Demo – NDVI Anomalies

Eaton Fire

- Basic NDVI Anomaly:
 https://code.earthengine.google.com/afc59a3cf645c2c8c49a990d050d833c
- Standardized NDVI Anomaly (Z-Score)
 https://code.earthengine.google.com/dbc390e2550d7a148fbda14fd27233d4
- Percentage NDVI Anomaly
 https://code.earthengine.google.com/43f57dddde9bbe70efb591780c7d8187

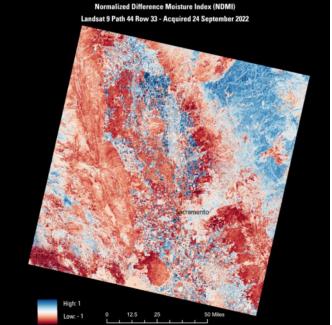

Spectral Indices for Wildfires

Spectral Indices for Fire Applications

m

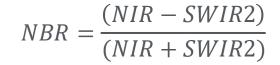
- Used to assess fire-related conditions:
 - Pre-fire risk
 - Active fire detection
 - Burn scar mapping
 - Post-fire recovery monitoring
- Common Indices:
 - NDMI (Normalized Difference Moisture Index)
 - NDVI (Normalized Difference Vegetation Index)
 - NBR (Normalized Burn Ratio)
 - <u>dNBR</u> (Differenced NBR)

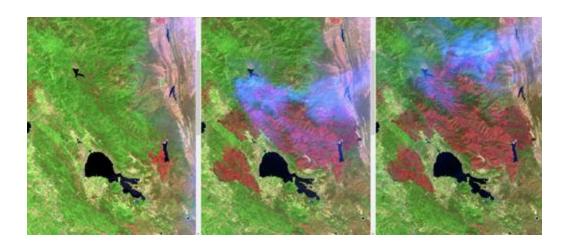
Exploiting Spectral Response Curves


NDMI (Normalized Difference Moisture Index)

- Measures vegetation moisture content and canopy water stress
- Combined with NDVI provides comprehensive vegetation health assessment
- Identifies water stress before visible symptoms
- Crucial information for fire risk assessment, water resource management, drought monitoring, and agricultural decisionmaking
- > 0.6: High vegetation moisture content
- **0.4 0.6**: Moderate moisture content
- **0.2 0.4**: Low vegetation moisture content
- **0 0.2**: Very low vegetation water content
- < 0: Non-vegetated or extremely dry

$$NDMI = \frac{(NIR - SWIR1)}{(NIR + SWIR1)}$$

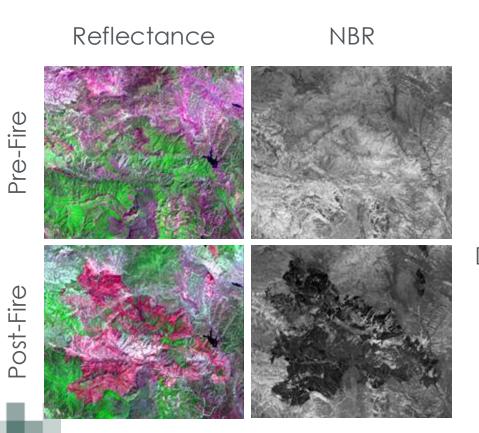




Credit: USGS

Normalized Burn Ratio (NBR)

- Compare pre- and post-burn to identify burn extent and severity.
- Healthy Vegetation:
 - High NIR reflectance: Leaf structure scattering
 - Low SWIR2 reflectance: Water absorption
 - Result: High positive NBR values (0.4–0.6)
- Burned Areas:
 - Reduced NIR reflectance: Destroyed vegetation structure
 - Increased SWIR2 reflectance: Exposed soil, ash, charcoal
 - Result: Low or negative NBR values
- > **0.4**: Healthy vegetation
- **0.1 0.4**: Moderate vegetation
- **0.0 0.1**: Sparse vegetation
- < 0.1: Burned areas
- < 0.0: Severely burned



Differenced Normalized Burn Ratio (dNBR)

- Normalized Burn Ratio (NBR)
- Establishes extent of burned area before and after fire event

- Differenced Normalized Burn Ratio (dNBR)
- Provides a comparison of pre- and post-NBR fire conditions to determine severity

 $dNBR = Prefire\ NBR - Postfire\ NBR$

Thresholded

40

Differenced Normalized Burn Ratio (dNBR)

m

- Burn scar mapping (burn perimeter delineation)
- Burn severity assessment (vegetation mortality & erosion risk assessment)
- Temporal analysis (pre-fire conditions, repeat fire analysis, and recovery monitoring)
- Higher dNBR values: Greater vegetation damage
- Negative dNBR: Vegetation improvement (rare, indicates recovery or error)
- Near zero dNBR: Little change (unburned areas)

Severity Level	dNBR Range
Enhanced Regrowth, high (post-fire)	dNBR < -0.25
Enhanced Regrowth, low (post-fire)	-0.25 ≤ dNBR < -0.1
Unburned	-0.1 ≤ dNBR < 0.1
Low Severity	0.1 to 0.27
Moderate-low Severity	0.27 to 0.44
Moderate-high Severity	0.44 to 0.66
High Severity	dNBR ≥ 0.66

Burn severity levels obtained calculating dNBR, proposed by USGS.

Demo – Wildfire Damage Assessment

Eaton Fire

- This script analyzes fire severity using the Normalized Burn Ratio (NBR) calculated from Landsat data.
- The script can be adapted for any fire event by modifying the parameters.
- ANALYSIS WORKFLOW:
- (1) Load median composite pre- and post-fire Landsat images to reduce cloud interference
- (2) Calculate the Normalized Burn Ratio (NBR) for both time periods
- (3) Calculate the differenced NBR (dNBR = pre-NBR minus post-NBR)
- (4) Classify burn severity using USGS standard thresholds
- (5) Calculate area statistics for each severity class
- (6) Export results for further analysis
- GEE Code: https://code.earthengine.google.com/7937763e4f714a9fa1413fe93fd3fef2

Summary

- Spectral indices are mathematical formulas combining spectral bands to highlight surface features, reduce noise, and enable consistent cross-sensor monitoring using standard formats.
- **Key monitoring satellites/sensors include** MODIS & VIIRS for daily global coverage, Landsat 8/9 for 30m resolution, Sentinel-2 for 10–20m resolution, and HLS for combined 2–3-day revisit time.
- **Vegetation index anomalies are calculated** using 10+ year baselines to compute climatological means, then determining current departures via absolute, standardized, or percentage formulas.
- **Essential indices include** NDVI for vegetation health, NDMI for moisture content, NBR for burn detection, and EVI for dense vegetation analysis.
- **Fire applications combine multiple approaches:** pre-fire risk assessment with NDMI, active detection with thermal sensors, burn severity mapping with dNBR, and recovery monitoring through NBR time series.
- Case studies demonstrate practical applications for pre-fire assessment, fire severity, and recovery monitoring using spectral indices and cloud-based analysis platforms.

Resources

m

- ARSET Trainings:
 - Spectral Indices for Land and Aquatic Applications
 - Assessing the Impacts of Fires on Watershed Health
 - Using Earth Observations for Pre- and Post-Fire Monitoring
 - Satellite Observations and Tools for Fire Risk, Detection, and Analysis
 - Introduction to NASA Earth Observations and Tools for Wildfire Monitoring and Management
- LANDFIRE
- Climate Engine
- Google Earth Engine Tutorials
- Monitoring Trends in Burn Severity (MTBS)
- Global Wildfire Information System (GWIS)
- <u>Fire Information for Resource Management System (FIRMS)</u>

Thank You!

