

Earth Observations in Support of Insurance & Finance Sector Decision-Making

Observations and Modeled Weather Data for Precipitation and Floods

Amita Mehta (NASA GSFC, UMBC), Sean McCartney (NASA GSFC, SSAI), Erika Podest (NASA, JPL)

November 12, 2025

Learning Objectives

m

- By the end of this presentation attendees will be able to:
 - Identify observational and model-based datasets applicable to flood monitoring
 - Precipitation measurements: IMERG
 - Weather parameters (wind speed, surface pressure, humidity, temperature: MERRA-2
 - Nighttime lights imagery: VIIIRS
 - Explore case studies showcasing data applications

IMERG: Integrated Multi-satellitE Retrievals for GPM

MERRA-2: The Modern-Era Retrospective Analysis for Research and Applications, Version 2

VIIRS: Visible Infrared Imaging Radiometer Suite

Outline

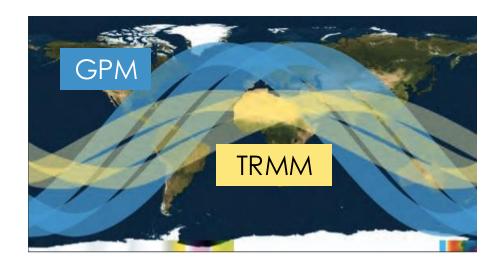
m

- Overview of:
 - IMERG precipitation data
 - MERRA-2 weather data
 - VIIRS nighttime lights data
- Examples of Data Applications

IMERG: Integrated Multi-satellitE Retrievals for GPM

MERRA-2: The Modern-Era Retrospective Analysis for Research and Applications, Version 2

VIIRS: Visible Infrared Imaging Radiometer Suite


Overview of IMERG Precipitation Data

GPM (Operational) and TRMM (Legacy)

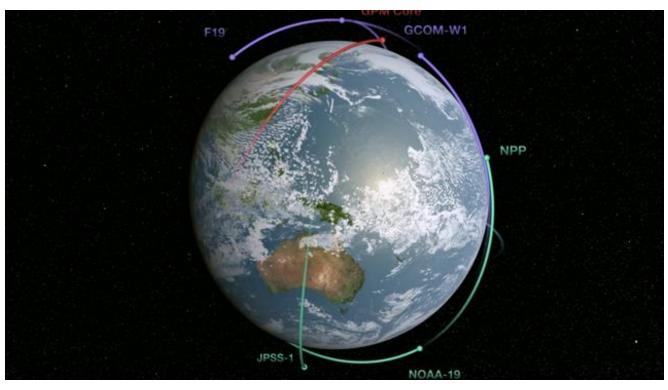
- Dedicated <u>precipitation measurement missions</u>
 (<u>PMM</u>) to measure precipitation from active and passive microwave observations.
- Collaborative missions between NASA and Japanese Space Agency (JAXA).
- TRMM was and GPM is in low-inclination, non-polar orbit.
- TRMM: November 1997 to April 2015
- GPM: February 2014 to present
- Combined, TRMM and GPM provide 20+ years of precipitation data.

TRMM: Tropical Rainfall Measuring Mission

GPM: Global Precipitation Measurement

- TRMM measurements were limited to the tropics (35° north/south latitude).
- GPM measurements span middle and high latitudes (65° north/south latitude).

http://pmm.nasa.gov/



Multi-Satellite Algorithms for TRMM and GPM

- TRMM & GPM core satellites are used to calibrate microwave observations from a constellation of national and international satellites.
- TRMM Multi-satellite Precipitation Analysis (TMPA)
- Integrated Multi-satellitE Retrievals for GPM (IMERG)
- IMERG is calibrated with TMPA to provide long-term precipitation record.
- Lean more about the <u>precipitation</u> algorithms.

GPM Satellite Constellation

Allows improved spatial and temporal coverage of precipitation data

Integrated Multi-satellitE Retrievals for GPM (IMERG)

- Multiple runs accommodate different user requirements for latency and accuracy.
- GPM IMERG <u>Algorithm Theoretical Basis Document (ATBD)</u>
- Latency:
 - o "Early" now 5 hours (flash flooding) will be 4 hours.
 - o "Late" now 15 hours (crop forecasting) will be 12 hours.
 - "Final" 3 months (research data)
- Value-added products at 3 hrs., 1, 3, and 7 days .tiff will be available
- Initial release covers 60°N-60°S will be 90°N-90°S.

IMERG Technical Specifications

Parameters	IMERG
Spatial Resolution	0.1° x 0.1°
Spatial Coverage	Global
Temporal Resolution	30 minutes
Temporal Coverage	1998 – present

Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. Huffman et al. (2019)

Data Visualization

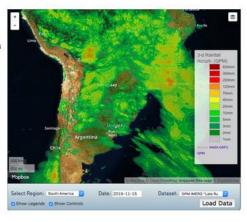
https://gpm.nasa.gov/data/visualization

Data Visualization

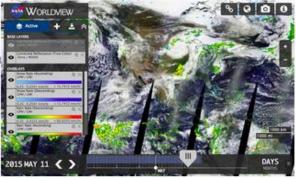
Global Viewer

View the latest near-realtime GPM IMERG global precipitation datasets (30 minute, 1 day, 7 day) on an interactive 3D globe in your web browser.

STORM Event Viewer


View 2D GMI and 3D DPR data from the latest extreme weather events on an interactive 3D globe in your web browser.

(click here for mobile version)


Precipitation and Applications Viewer

View and download various precipitation and applications datasets from the past 60 days (30 minute, 1 day, 3 day, 7 day precipitation, floods nowcast, landsides nowcast). Download datasets in various popular formats (TIF, SHP, arcJSON, geoJSON, topoJSON) and learn how to directly access the data via the PMM Publisher API.

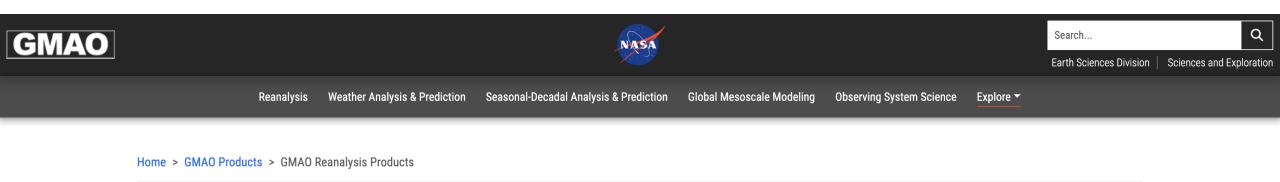
NASA Worldview

This tool from NASA's Earth Observing System
Data and Information System (EOSDIS) provides
the capability to interactively browse global,
full-resolution satellite imagery and then download
the underlying data, including data from the Global
Precipitation Measurement Missions.

Overview of Weather Parameters from MERRA-2

MERRA-2 Weather Data Products

MERRA-2 provides core meteorological information in two-dimensional (single-level or vertically integrated) and three-dimensional (pressure or model levels) formats.


- Air Temperature: 2-meter, 10-meter, and multiple atmospheric levels.
- Winds: Eastward and northward wind components at 10-meters and various pressure/model levels.
- Humidity: Specific humidity at 2-meters and various levels.
- Pressure: Sea-level pressure and surface pressure.
- Precipitation: Total precipitation, convective precipitation, and snowfall.
- Clouds: Cloud fraction and in-cloud optical thickness for different cloud layers.

MERRA-2

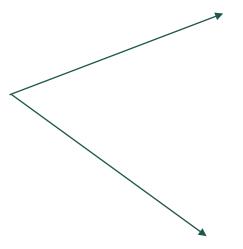
Technical information about <u>MERRA-2</u> model reanalysis and data products

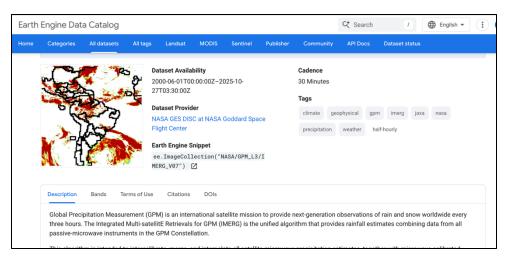
GMAO Reanalysis Products

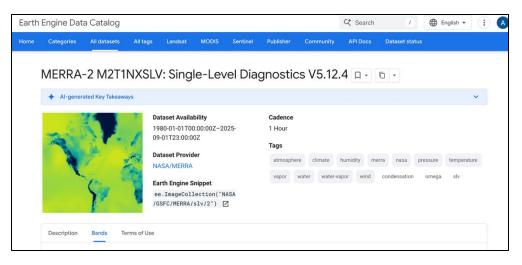
Product ID	Description	Information	Periods Covered	Data Access	Documentation
MERRA-2	Atmospheric reanalysis for the satellite era, including coupled aerosols	MERRA-2 Project Page	1/1/1980 - ongoing	 Data available at MDISC, managed by GES DISC MERRA-2 Visualizations MERRA-2 User Metrics 	 MERRA-2 File Specifications MERRA-2 Technical Memorandum

Webtools for IMERG and MERRA-2 Data Access and Analysis

Tool	Features Features Features				
<u>Giovanni</u>	 Spatial/Temporal subsetting Analysis: Time-averaged maps, animation, time series, scatter plots, map correlations, vertical profiles, time-averaged differences Visualization: Maps, time series, scatter plots, histograms Near real-time rain rate access 				
NASA Earthdata Search	Spatial/Temporal subsettingBulk download				
Google Earth Engine	 Spatial/Temporal subsetting Analysis: Time-averaged maps, animation, time series, scatter plots, map correlations, vertical profiles, time-averaged differences Visualization: Maps, time series, scatter plots, histograms 				


IMERG and MERRA-2 Data Access, Analysis, Visualization


NASA Earthdata Search


<u>Giovanni</u>

NASA Worldview

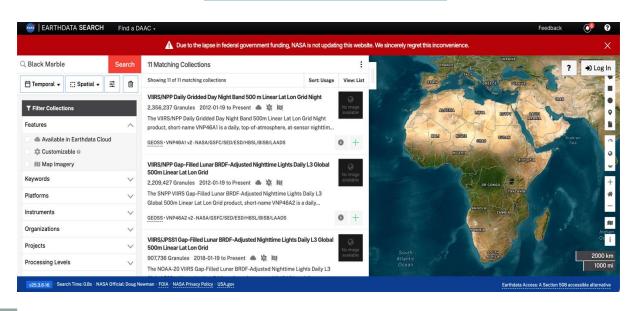
Google Earth Engine

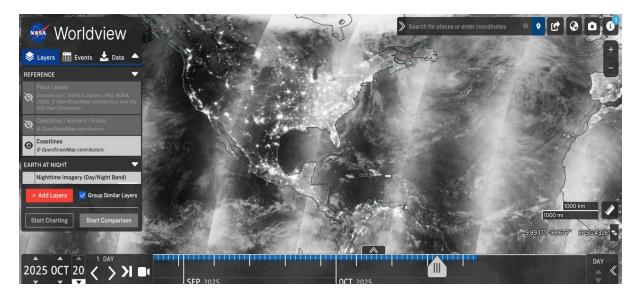
Overview of Nighttime Lights from VIIRS

Black Marble Nighttime Lights Product

- Uses Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night band (DNB)
- DNB is a panchromatic channel covering the wavelengths from 500 nm to 900 nm
- It is sensitive to visible and near-infrared radiation from daylight to the low-level radiation observed at night
- A daily calibrated, corrected, and validated product suite to observe nightlights
- Black Marble Webpage

Credit: NASA Black Marble Team

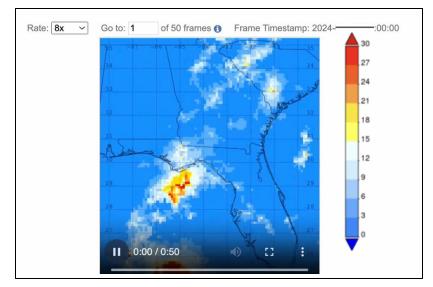

ARSET Training (2020): Introduction to NASA "Black Marble" Night Lights Data


Black Marble Data Access and Visualization

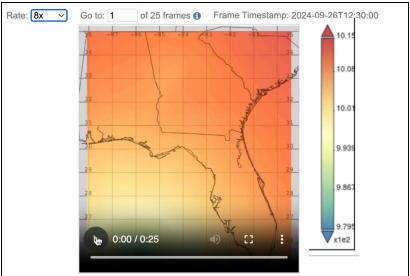
Product Name	SNPP	JPSS-1
Daily Gridded Day Night Band 500m Linear Lat Lon Grid Night	VNP46A1	VJ146A1
Gap-Filled Lunar BRDF-Adjusted Nighttime Lights Daily L3 Global 500m Linear Lat Lon Grid	VNP46A2	VJ146A2
Lunar BRDF-Adjusted Nighttime Lights Monthly L3 Global 15 arc second Linear Lat Lon Grid	VNP46A3	VJ146A3
Lunar BRDF-Adjusted Nighttime Lights Yearly L3 Global 15 arc second Linear Lat Lon Grid	VNP46A4	VJ146A4

NASA Earthdata Search

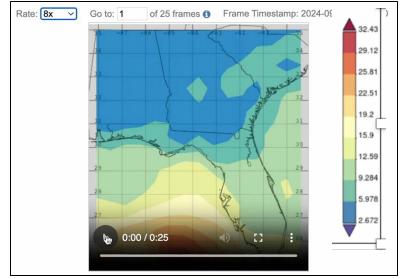
NASA Worldview


Example of Data Applications

Monitoring Hurricane Helene (26–27 September 2024)

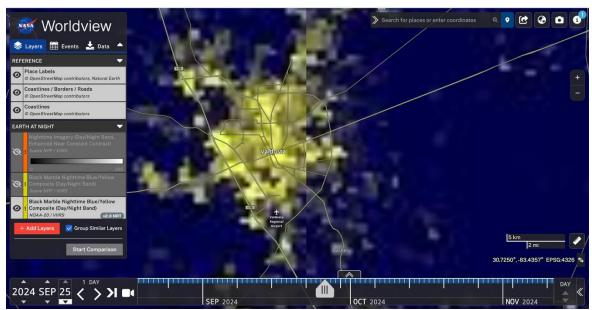


Monitor Hurricane Helene using Giovanni Data Analysis and Visualization Capability

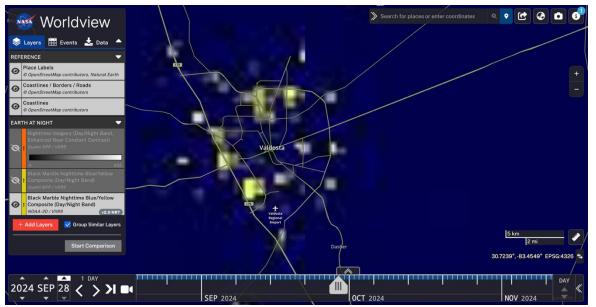

IMERG Rainfall mm.hr-1

MERRA-2 Sea Level Pressure hPa

MERRA-2 Surface Wind Speed. m.s⁻¹



Monitoring Hurricane Helene (26–27 September 2024)

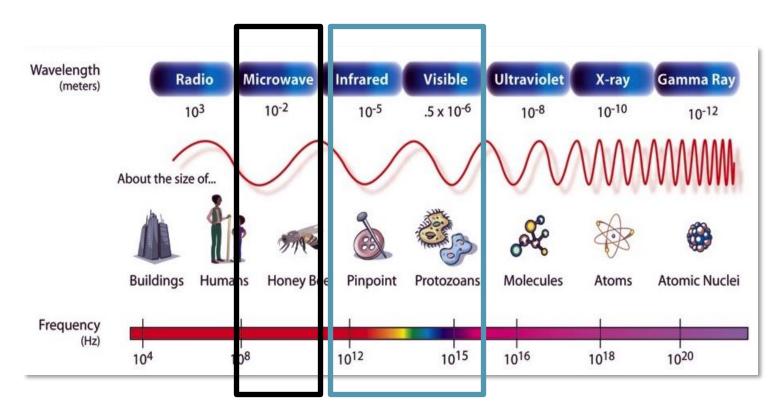

Monitor Post-Hurricane Power Outages using NASA Worldview

Night Light Imagery from NOAA-20 VIIRS

25 September 2024

28 September 2024

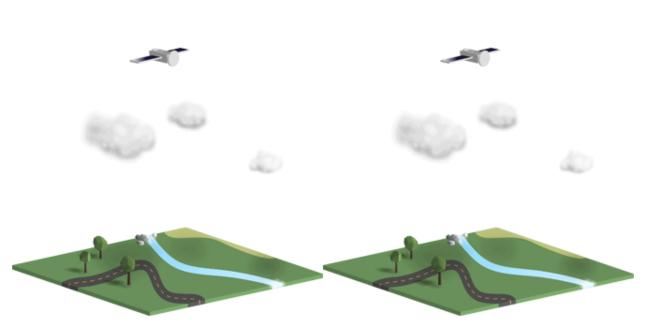
Thank You!



Radar Data

Electromagnetic Radiation for Remote Sensing

- Optical sensors measure reflected solar light and only function in the daytime.
- The surface of the Earth cannot be imaged with visible or infrared sensors when there are clouds.
- Microwaves can penetrate through clouds and vegetation and can operate in day or night conditions.


Optical Sensors

use infraredvisible regions.

Active and Passive Remote Sensing

Passive: Sensors detect only what is emitted from the landscape or is reflected from another source (e.g., light reflected from the sun).

Active: Instruments emit their own signal and the sensor measures what is reflected back. Sonar and radar are examples of active sensors.

Passive Sensors:

- The source of radiant energy arises from natural sources
- e.g., the Sun, Earth, other "hot" bodies

Active Sensors

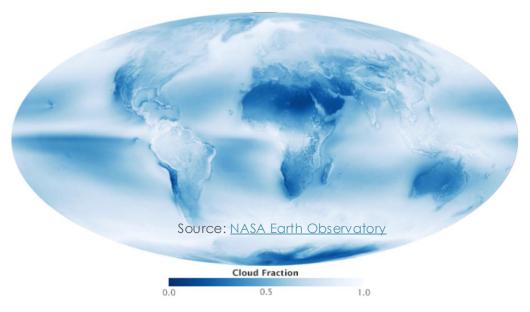
- Provide their own artificial radiant energy source for illumination
- e.g., Radar, Synthetic Aperture Radar (SAR), LiDAR

Advantages and Disadvantages of Radar Over Optical Remote Sensing

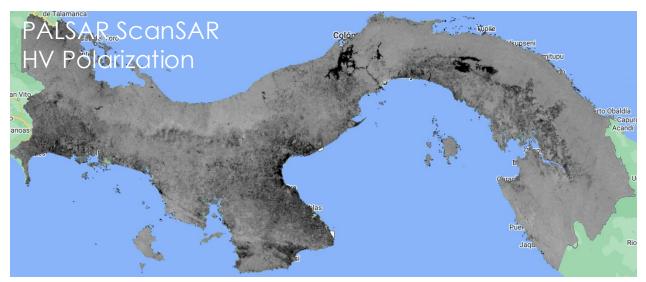
Advantages

- Nearly all-weather capability
- Day or night capability
- Penetration through the vegetation canopy
- Penetration through the soil
- Minimal atmospheric effects
- Sensitivity to dielectric properties (liquid vs. frozen water)
- Sensitivity to structure

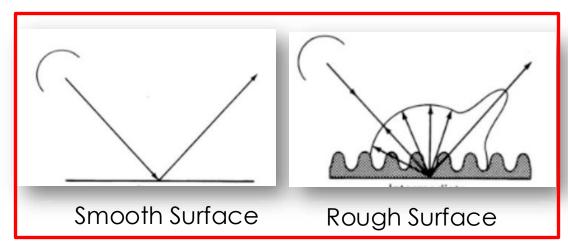
Disadvantages

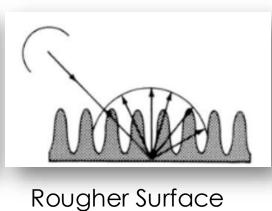

- Information content is different than optical and sometimes difficult to interpret
- Speckle effects (graininess in the image)
- Effects of topography

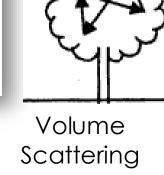
Optical vs. Radar

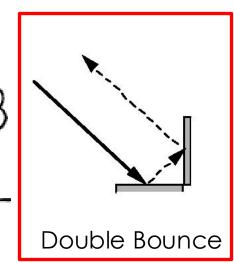


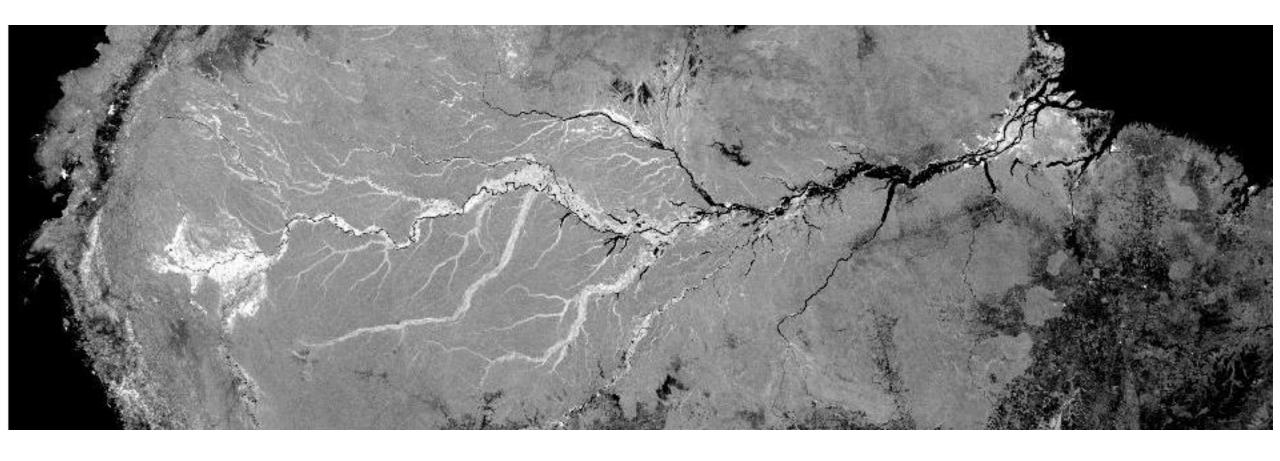
Cloud fraction averaged from 200-2015, compiled using data from MODIS on Aqua.








SAR Signal Scattering Over Inundated Regions

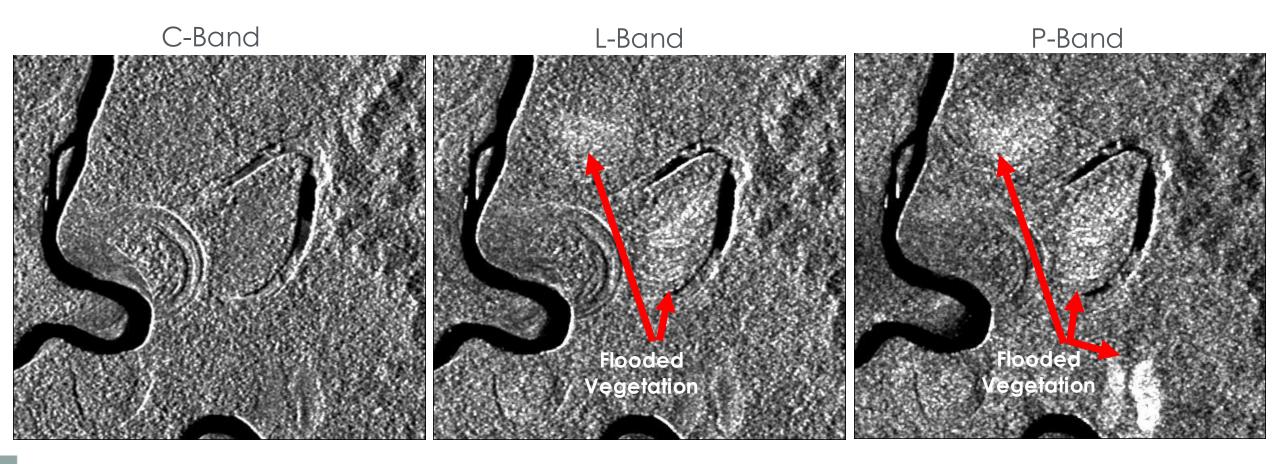


Radar Image

Applications of Radar (SAR) Data for Flood Detection

Flood Detection with Radar

- Inundated vegetation:
 the temporary or
 permanent occurrence
 of a water surface
 beneath a vegetation
 canopy
- Open water: water without any standing vegetation



Signal Penetration Over Flooded Vegetation

Multifrequency AIRSAR data in Manu National Park, Peru

Wetland Inundation

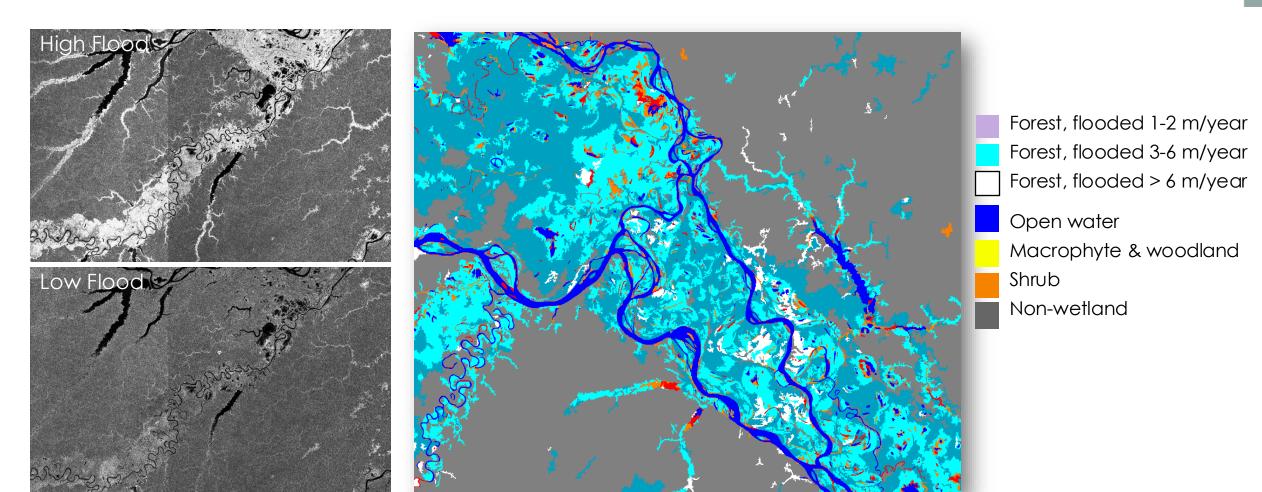
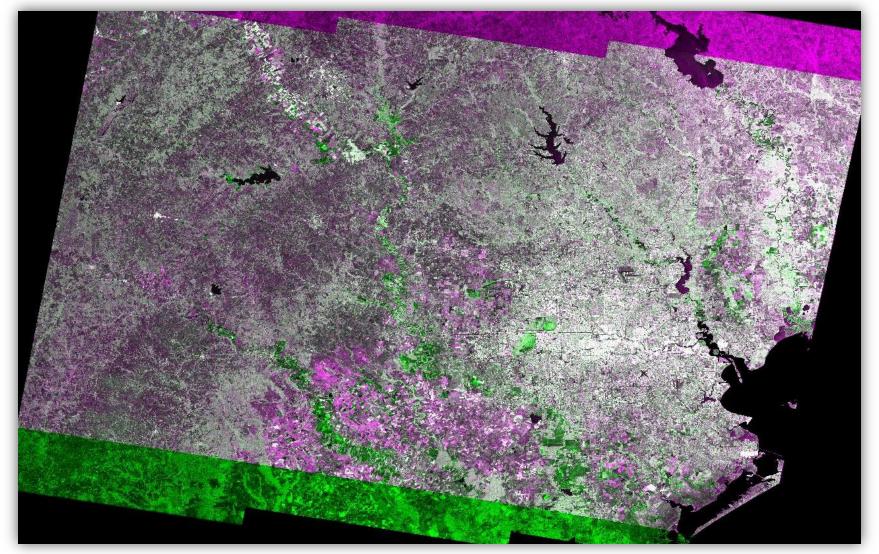
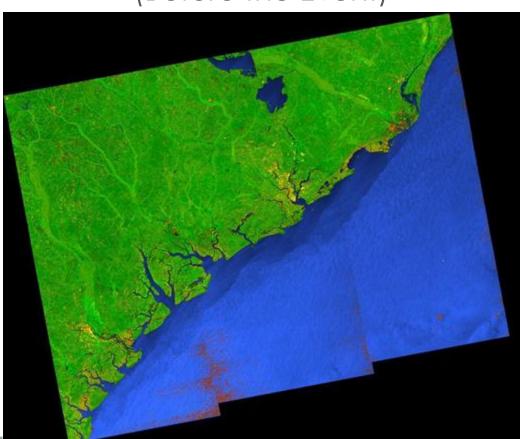



Image Credit: L. Hess, B. Chapman, and K. McDonald

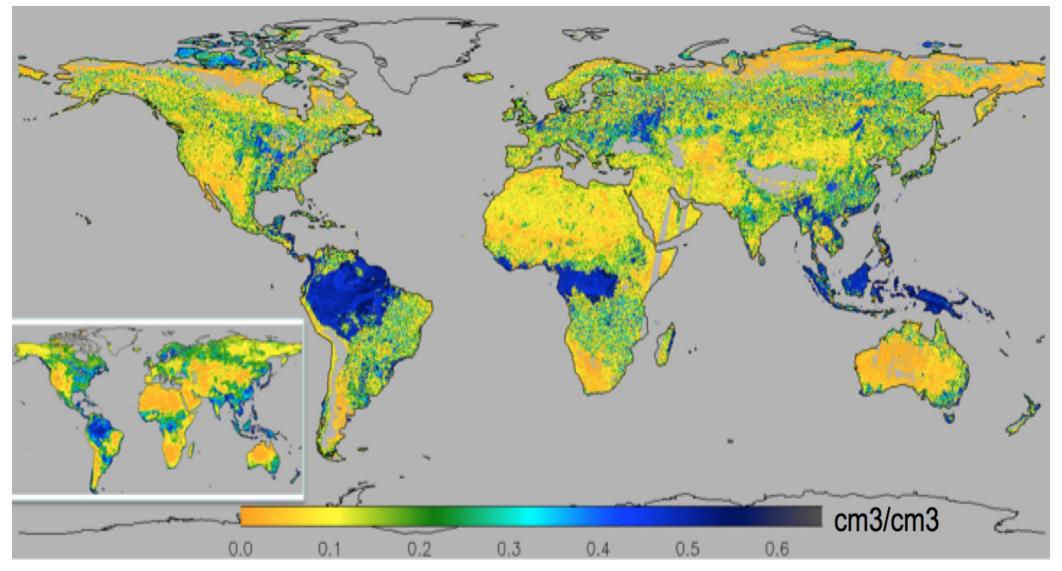
Wetland vegetation and inundation period product derived from changes in flooding state using multi-date PALSAR ScanSAR



Hurricane Harvey in Houston Texas - Before and During the Event Sentinel-1 Radar Images, RGB: Aug 30 (R), Aug 18 (G), Aug 30 (B)

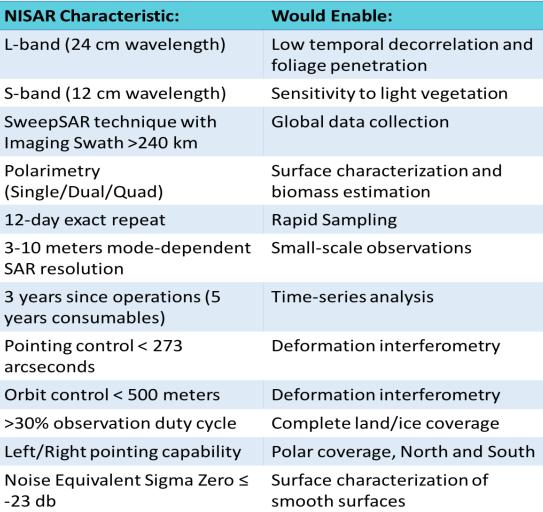
Hurricane Matthew on the East Coast of the U.S. – Coastal Flooding Sentinel-1 Radar Images (R-VV; G-VH; B-VV/VH)

Oct 4, 2016 (Before the Event)


Oct 16, 2016 (After the Event)

Soil Moisture Monitoring

Soil Moisture from the SMAP Radar (HH, HV) - June 19–26, 2015



Data Access – Radar Data and Products

Webtools & Data Portals

Webtool	Data
Google Earth Engine	 Sentinel-1 (2014–Present) PALSAR ScanSAR (2014–Present) Global PALSAR Yearly Global Mosaics (2007–2024) Global PALSAR Forest/Non-forest Maps (2007–2021) SMAP Soil Moisture
Alaska Satellite Facility	 PALSAR (2006–2011) PALSAR-2 ScanSAR (2014–Present) Sentinel-1 (2014-Present) NISAR (coming soon)
<u>Copernicus Hub</u>	 Sentinel-1 Sentinel-1 Monthly Mosaics BIOMASS (in the future)
JAXA	 JERS-1 PALSAR PALSAR-2 PALSAR Yearly Global Mosaics PALSAR Yearly Global Forest/Non-forest Maps
NSIDC DAAC (SMAP Soil Moisture)	SMAP Soil Moisture Data (9 and 36 km)
NASA AppEEARS	SMAP Soil Moisture (subsetting tool available)

NISAR

- Major partnership between US National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO)
- Launch date: July 30, 2025
- Dual frequency L- and S-band Synthetic Aperture Radar (SAR)
 - L-band SAR from NASA and S-band SAR from ISRO
- 3 years science operations (5+ years consumables)
- All science data (L- and S-band) will be made available free and open

Resources

ARSET Trainings

- An Introduction to Synthetic Aperture Radar (SAR) and its Applications
- SAR for Detecting and Monitoring Floods, Sea Ice, and Subsidence from Groundwater Extraction
- <u>Disaster Assessment Using Synthetic Aperture Radar</u>
- SAR for Disasters and Hydrological Applications

Other Resources

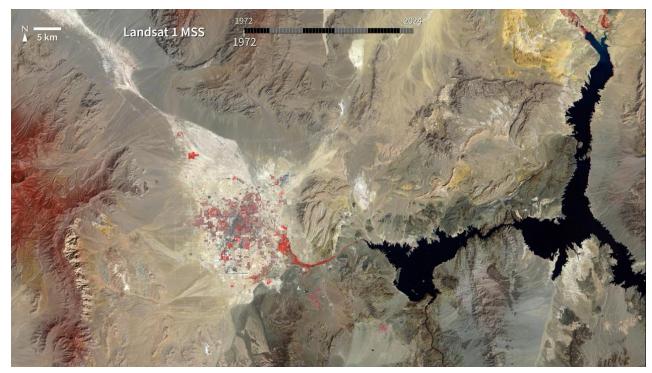
- Synthetic Aperture Radar (SAR) NASA Earthdata
- The SAR Handbook NASA Earthdata

Thank You!

Observations and Modeled Data for Landcover and Elevation Products

Learning Objectives

- By the end of this presentation attendees will be able to:
 - Discover relevant land cover/land use products for regional and global applications
 - Access publicly available land cover data products
 - Identify characteristics of aerial versus satellite-based Digital Elevation Models (DEMs)
 - Access DEMs for hydrological and flood analysis



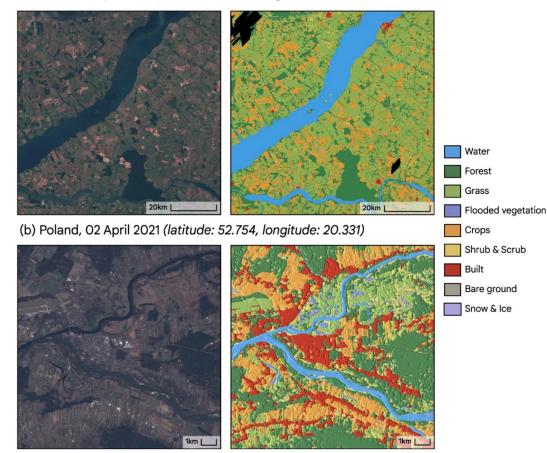
Land Cover and Land Use Products

Applications – Land Cover and Land Use

- Economic Applications: 1) Agricultural economics,
 2) Real estate and property valuation, 3) Natural resources, 4) Infrastructure, 5) Risk management and finance
- Environmental Monitoring Track deforestation, urbanization, and habitat changes over time
- Climate and Weather Applications Support climate modeling and carbon cycle studies
- Natural Resource Management Inform water resource and land management decisions
- Disaster Risk Assessment Model flood risk and wildfire susceptibility
- Urban and Regional Planning Track urban sprawl and growth
- Scientific Research Change detection analysis
- Policy and Governance Inform environmental policy decisions

False-color imagery – rapid urbanization of Las Vegas between 1972 and 2023. Credit: NASA Scientific Visualization Studio

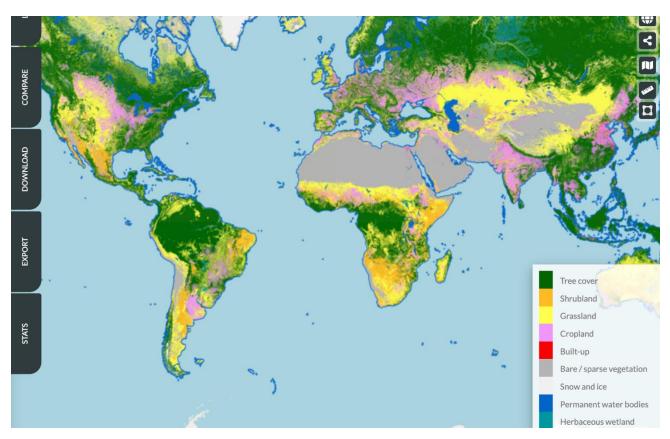
- ESRI Global Land Cover Map
 - o Temporal coverage: 2017–2024
 - Spatial resolution: 10 meters
 - Temporal resolution: Annual
 - Geographic extent: Global
 - Distributed using a Creative Commons by Attribution (CC BY 4.0) license
 - ESRI | Sentinel-2 Land Cover Explorer


Credit: Esri & Impact Observatory

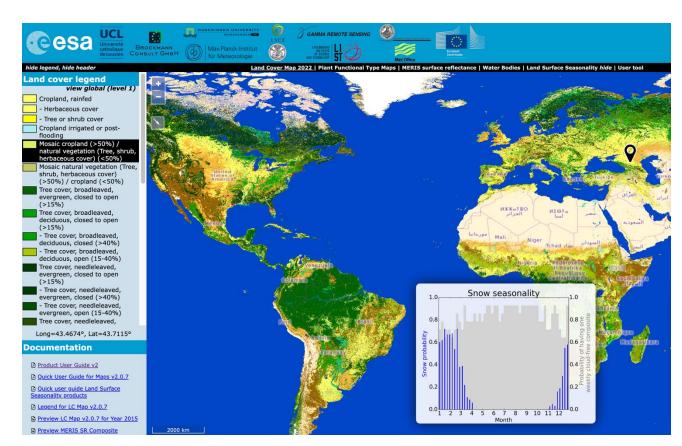
- <u>Dynamic World (Google/World Resources Institute)</u>
 - Temporal coverage: June 2015–Present
 - Spatial resolution: 10 meters
 - Temporal resolution: 3–5 days
 - Geographic extent: Global
 - Near real-time (NRT) predictions of LCLU estimated class probabilities (0–1)
 - Dynamic World, near real-time global 10 m land use land cover mapping
 Brown et al. (2022)

From: Dynamic World, Near real-time global 10 m land use land cover mapping

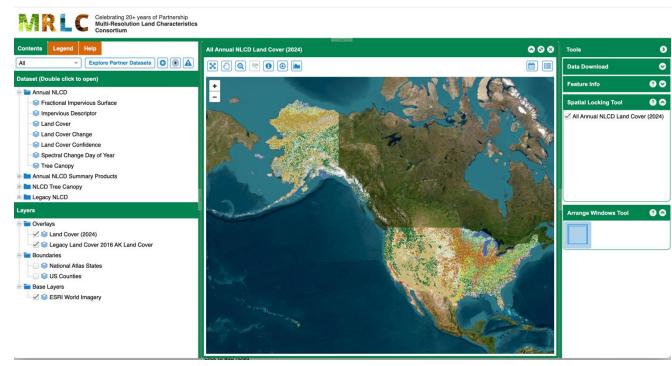
(a) Brazil, O5 April 2021 (latitude: -22.193, longitude: -52.407)


Credit: Brown et al. Scientific Data 9, Article 251 (2022)

ESA <u>WorldCover</u>


- o Temporal coverage: 2020 & 2021
- o Spatial resolution: 10 meters
- o Temporal resolution: Annual
- o Geographic extent: Global
- Based on both Sentinel-1 and Sentinel-2 data
- o <u>User Manual</u>

Credit: European Space Agency (ESA)


- ESA Climate Change Initiative Land Cover (<u>CCI-LC</u>)
 - o Temporal coverage: 1992–2022 (31 years)
 - o Spatial resolution: 300 meters
 - o Temporal resolution: Annual
 - o Geographic extent: Global
 - o <u>User Guide</u>
 - o <u>Viewer</u>

Credit: European Space Agency (ESA)

- Annual National Land Cover Database (NLCD)
 - o Temporal coverage: 1985 2024 (39 years)
 - o Spatial resolution: 30 meters
 - Temporal resolution: Annual
 - o Geographic extent: United States
 - o Collective effort between USGS and the Multi-Resolution Land Characteristics (MRLC) Consortium
 - o <u>User Guide</u>
 - o <u>Viewer</u>

Credit: MRLC

CORINE Land Cover

- Coordination of Information on the Environment (CORINE) Land Cover (CLC)
- o Temporal coverage: 1990 2018
- o Spatial resolution: 100 m
- o Temporal resolution: Every 6 years
- o Geographic extent: Europe
- o <u>Documentation</u>
- o <u>Viewer</u>

Credit: Copernicus Land Monitoring Service

Data Access – Land Cover and Land Use Products

Webtools & Data Portals

Webtool	Data
Google Earth Engine	 Dynamic World V1 (Tutorial) WorldCover v100 (2020) WorldCover v200 (2021) NLCD 2019 NLCD 2021 CORINE Land Cover
ArcGIS Living Atlas of the World Esri Sentinel-2 Land Cover Explorer	ESRI Global Land Cover Map
WorldCover Viewer Amazon Web Services (AWS) Terrascope WMS	• WorldCover
CCI-LC viewer	ESA Climate Change Initiative Land Cover (CCI-LC)
MRLC data download MRLC Viewer	Annual National Land Cover Database (NLCD)
CORINE Data Viewer	CORINE Land Cover

Overview of Digital Elevation & Surface Models

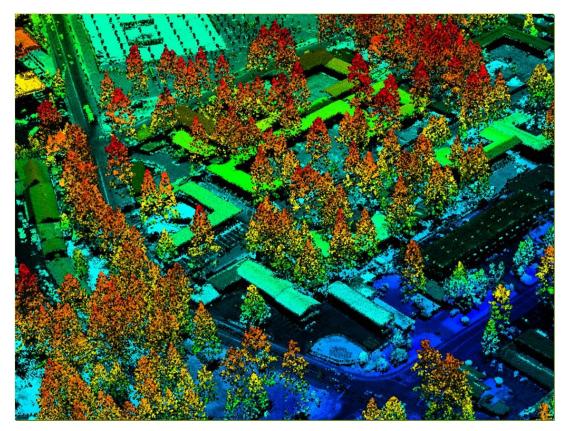
Definitions – Digital Elevation & Surface Models

- A Digital Elevation Model (DEM) represents the ground surface in three dimensions, excluding trees, buildings, and other above-ground features.
- A Digital Surface Model (DSM) is a 3D representation of the Earth's surface that includes all features visible from above, such as buildings, trees, and terrain
- Generated from traditional topographic maps, modern LiDAR data, and other aerial and satellite-based platforms.
- Satellite platforms employ radar interferometry, laser altimetry, stereo optical imagery – moderate spatial resolution (10– 90 m) but regional to global coverage

Image Credit: NASA

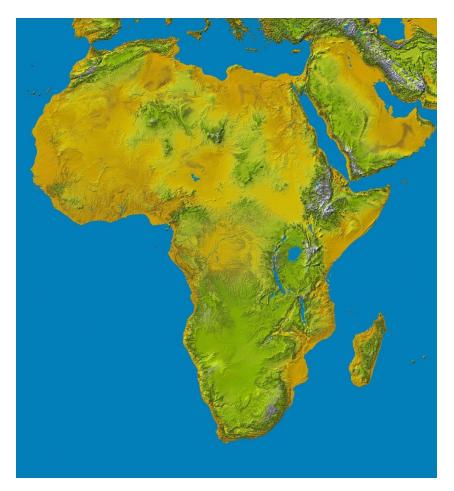
Trade-offs – Digital Elevation & Surface Models

Aspect	Aerial	Satellite
Spatial resolution	Very High	Moderate
Accuracy	Higher	Lower
Coverage	Limited globally	Extensive
Update frequency	On-demand	Periodic
Applications	Detailed engineering, urban planning, small	Regional studies, global analysis, large-area


watersheds

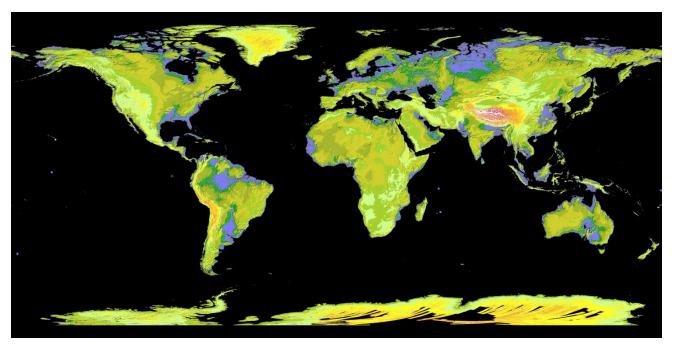
mapping

Applications – Digital Elevation & Surface Models


- Hydrology and Water Management
 - Watershed delineation and drainage network mapping
 - Flood modeling and inundation mapping
- Disaster Risk Assessment
 - Landslide susceptibility mapping
 - Tsunami and storm surge modeling
- Urban and Infrastructure Planning
 - Site suitability analysis for development
 - Transportation corridor planning
- Engineering
 - Dam and reservoir design
 - Solar panel installation optimization
- Military and Defense
 - Terrain analysis for operations
 - Optimize placement of surveillance systems

North shore Lake Tahoe LiDAR point cloud data Credit: <u>USGS</u>

- Shuttle Radar Topography Mission (SRTM)
- C-band & X-band radar
- Payload onboard Space Shuttle Endeavour
- Completed mission in February 2000
- 1 arc second (30m), 3 arc second (90m), 30 arc second (1000m)
- Acquired digital terrain elevation data of all land between 60°N – 56°S latitude (~80% of Earth's total land mass)
- <u>User Guide</u>



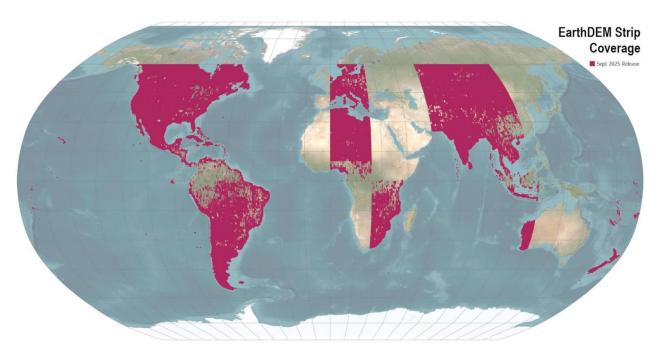
Credit: NASA

- Advanced Spaceborne Thermal and Reflection Radiometer (ASTER)
- Instrument onboard Terra satellite polar orbiting satellite launched Dec 1999
- Spatial Resolution: 30 m (global)
- Spectral Resolution (14 bands)
 - Bands 1–3: 15 m (VNIR)
 - Bands 4–9: 30 m (SWIR)
 - Bands 10–14: 90 m (TIR)
- User Guide

Credit: NASA

m

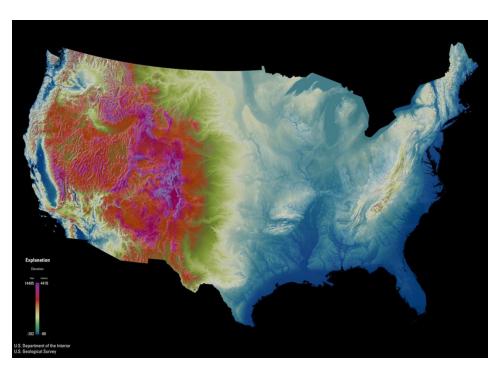
- Copernicus DEM
- Data were acquired by the TanDEM-X mission between 2011 and 2015
- Spatial Resolution: GLO-30 (30m), GLO-90 (90m)
- Registered users can freely access the 30m & 90m data – access to the 10m instances over Europe is limited to a specific subset of users.
- Copernicus Browser


Credit: DLR

m

EarthDEM

- High-resolution Digital Surface Models (DSM) in non-polar regions at 2-meter spatial resolution.
- Spatial Resolution: 2 m
- Constructed using hundreds of thousands of individual stereoscopic DEMs extracted from pairs of submeter (0.32 to 0.5 m) resolution Maxar satellite imagery
- Covers land surface between 60 degrees N and 60 degrees South excluding Alaska, Greenland, and the Kamchatka Peninsula


Credit: Polar Geospatial Center (PGC) at the University of Minnesota

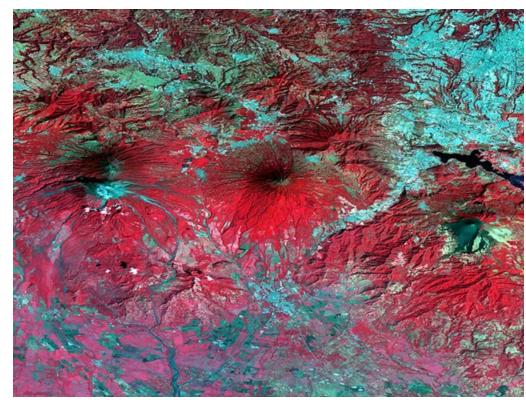
Open Data on AWS

Regional DEM & DSM Products

- <u>USGS 3D Elevation Program (3DEP)</u>
- 3DEP launched in 2016 and reached 98.3% U.S. coverage by 2024.
- Collected by LiDAR instruments mounted to aerial platforms
- 1/3 arc-second (10m) seamless DEM for the U.S. and 1 arc-second (30m) seamless DEM for conterminous U.S. and Alaska (most of Canada and Mexico).
- 1-meter and 1/9 arc-second (3m) are projectbased
- Acquired as DEM products and lidar point clouds
- National Map Downloader
- topoBuilder

Credit: USGS

Data Access – Digital Elevation Models


Webtools & Data Portals

Webtool	Data
Google Earth Engine	 SRTM DEM ASTER GDEM V002 Copernicus DEM
Application for Extracting and Exploring Analysis Ready Samples (AppEEARS)	• <u>SRTM DEM</u>
<u>Earthdata Search</u>	• <u>SRTM DEM</u> • <u>ASTER DEM</u>
<u>AWS</u>	 Copernicus DEM USGS 3DEP LiDAR Point Clouds EarthDEM
<u>Copernicus Browser</u>	<u>Copernicus DEM</u>
<u>Open Topography</u>	 NASADEM Copernicus DEM ALOS World 3D Continental Europe Digital Terrain Model 3DEP
National Map Downloader	• <u>3DEP</u>

Summary

- Number of publicly available land cover & land use datasets available on regional to global scales.
- Many use recent satellite data (10 m) from the last decade, while others incorporate 30 m sensors spanning 40 years.
- DEM & DSM are generated from traditional topographic maps, modern LiDAR data, and other aerial and satellite-based platforms.
- Available publicly at regional to global scales ranging from 1 m to 30 m.

Credit: NASA

Thank You!

