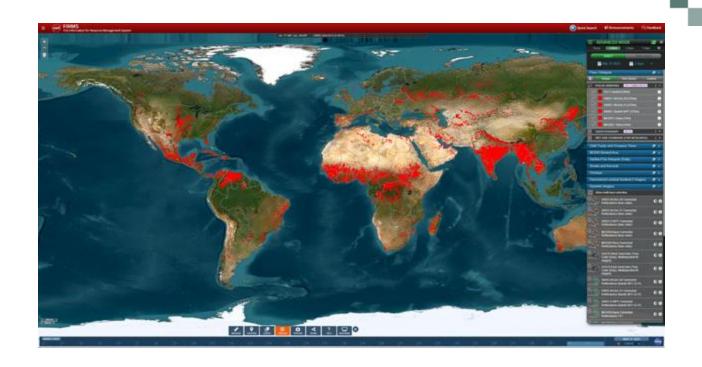


Fire Information for Resource Management System (FIRMS)

Fire Information for Resource Management System (FIRMS)

FIRMS Website

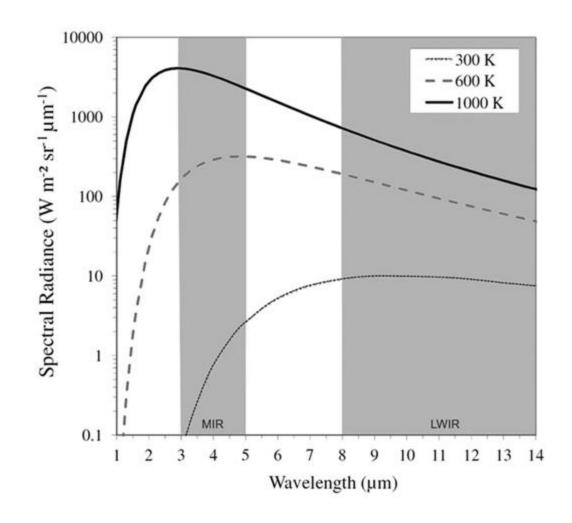

- Provides multiple sources of time sensitive derived active fire detection data products and satellite imagery.
- Objectives:
 - Provide global, low-latency satellite imagery and active fire products from multiple missions.
 - Monitor fire location, extent, intensity, environmental effects, and support emergency response.
 - Support science-based decisions through standardized interfaces for operational users and researchers.

FIRMS - Global

- FIRMS Global
- Low-latency imagery and active fire detection products for the world
- Developed by University of Maryland in early 2000s and used data from MODIS
- Transitioned to NASA's Land, Atmosphere Near real-time Capability for Earth observation (LANCE) in 2012

FIRMS - US/Canada

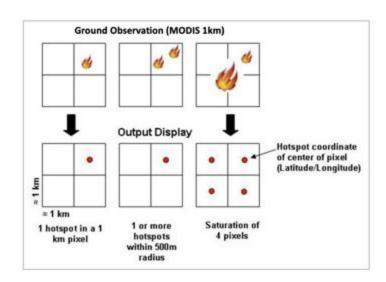
- FIRMS US/Canada
- Low-latency imagery and active fire detection products for the US & Canada
- Developed in partnership with USDA Forest Service
- Extension of the Forest Service's Active
 Fire Mapping Program developed in 2001
 that used data from MODIS and direct
 broadcast/direct readout
- Integrated with FIRMS Global within NASA LANCE in 2021

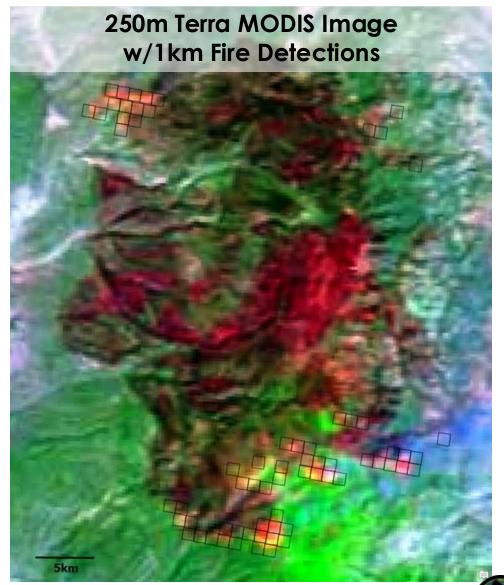


Satellite-Based Detection of Fires

How is a fire detected by satellite?

- Satellites detect fires at the time of observation or overpass.
- Specific reflective and emissive bands located on the satellite sensor are used to detect fires.
 - Leverage response from fires in Mid-Wave InfraRed (MWIR) and Long-Wave (LWIR) bands
 - Other bands used for masking, rejection of false positives, etc.
- Typical Temperatures:
 - Earth's Surface: ~300K
 - Smoldering Fires: 600K to 800K
 - Flaming Fires: ~1000K and Higher





What does a detection mean on the ground?

- Driven by the characteristics of the fire.
- Detected fire activity is often less than the pixel size.
 - Small or large, intense fire(s)
 - Less intense fire burning over a broader area
- Pixel size for fire detection data is determined by sensor spatial resolution.
- Detection coordinates are the center of a pixel containing fire activity.

What sizes/types of fires can be detected by satellite?

- Sensor Spatial Resolution
- Fire Size/Intensity
 - MODIS (1000m)
 - ~1,000m² smoldering to flaming fires in good conditions (day)
 - ~100m² flaming fire in good conditions (day)
 - VIIRS I-Band (375m)
 - ~100m² smoldering to flaming fires in good conditions (day)
 - ~20m² flaming fire in good conditions (day)
 - ~2m² flaming fire in good conditions (night)
 - Landsat OLI (30m)
 - ~10-20m² smoldering to flaming fires in good conditions (day)
 - ~4m² flaming fire in good conditions (day)
 - ~1m² flaming fire in good conditions (night)
- Algorithms and products are not perfect!

Landsat (30m)

VIIRS (375m)

MODIS (1km)

Schroeder et al., 2016

Schroeder et al., 2014

Schroeder & Giglio, 2017

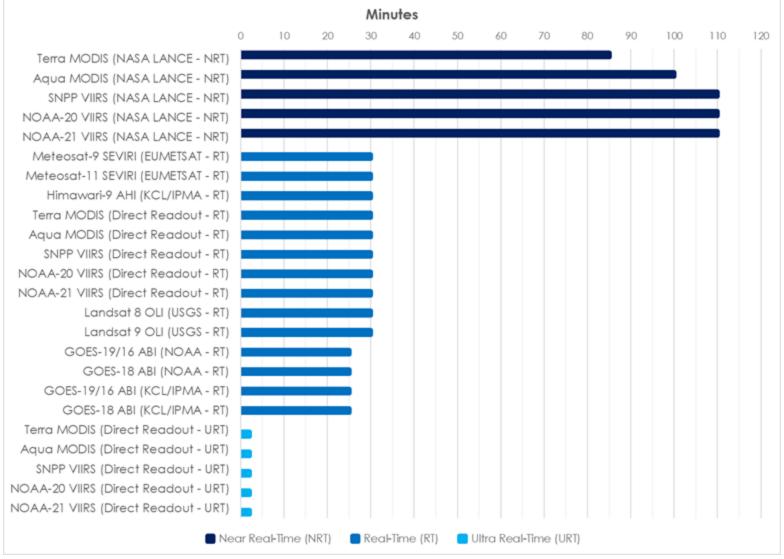
Summary of Satellite Data Product Availability in FIRMS

Satellite - Sensor	Active Fire	True Color Composite Imagery	False Color Composite Imagery	DNB Imagery	DNB/IR Composite Imagery	Burned Area	Vegetation Indices	Aerosol Indices	Snow Cover
GOES-16 ABI									
GOES-18 ABI									
Meteosat-9 SEVIRI									
Meteosat-11 SEVIRI									
Himawari-9 AHI									
Terra MODIS									
Aqua MODIS									
S-NPP VIIRS									
NOAA-20 VIIRS									
NOAA-21 VIIRS									
Sentinel-3A SLSTR									
Sentinel-3B SLSTR									
Landsat 8 OLI									
Landsat 9 OLI									
Sentinel 2A MSI									
Sentinel 2B MSI									

Available -**Provided in FIRMS**

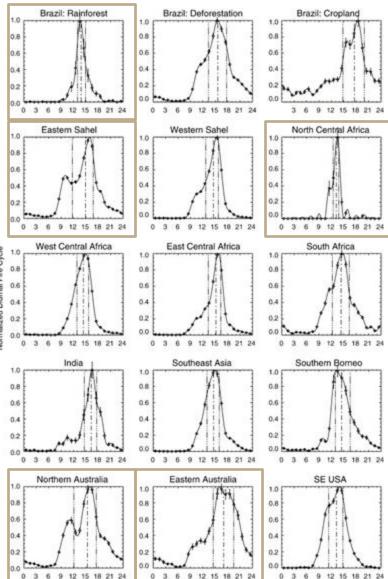
Available -Planned to Include in FIRMS

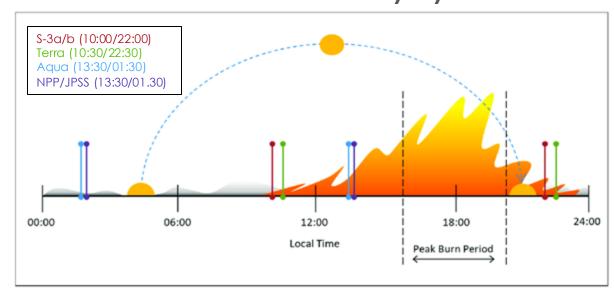
Available – Not Planned to Include in FIRMS


Available - Not **Provided in FIRMS**

Not Available

Active Fire Detection Data Latency in FIRMS


From satellite acquisition to FIRMS...

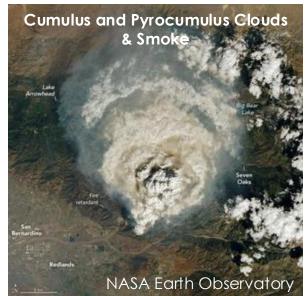

Factors Affecting Satellite Ability to Detect/Monitor Fire Activity

- Sensor Temporal Resolution
- Sensor Overpass Time

Diurnal Fire Cycle: Tropics & Sub-Tropics

Diurnal Wildfire Activity Cycle

Credit: Johnson et al., 2020 https://doi.org/10.3390/s20185081


Credit: Giglio, 2007:

Factors Affecting Satellite Ability to Detect/Monitor Fire Activity

- Atmospheric Obscurations
 - Cloud Cover
 - Dense Smoke
 - Fog
- Biophysical Setting
 - Forest Canopy
 - Less Forested Areas
 - Terrain

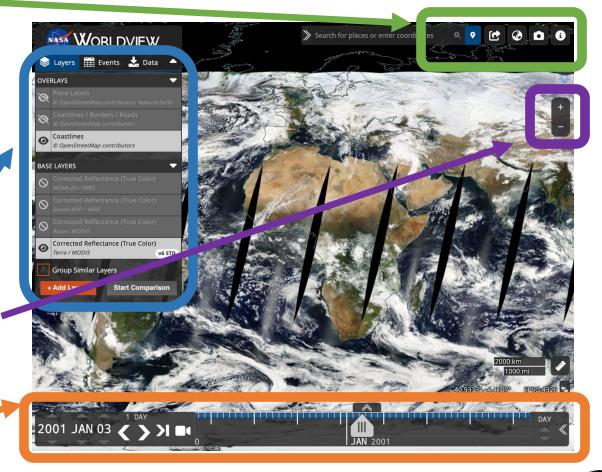
Demo - FIRMS

NASA Worldview

NASA Worldview

- Website
- Access Earth satellite remote sensing data easily
 - 1000+ global, full-resolution satellite imagery layers
 - Some imagery available in near real time (NRT)
 - Choose date or date range
 - Browse, search, save, share & download imagery layers
 - Worldview is built by the NASA/GSFC Earth Science Data and Information System (ESDIS) Project

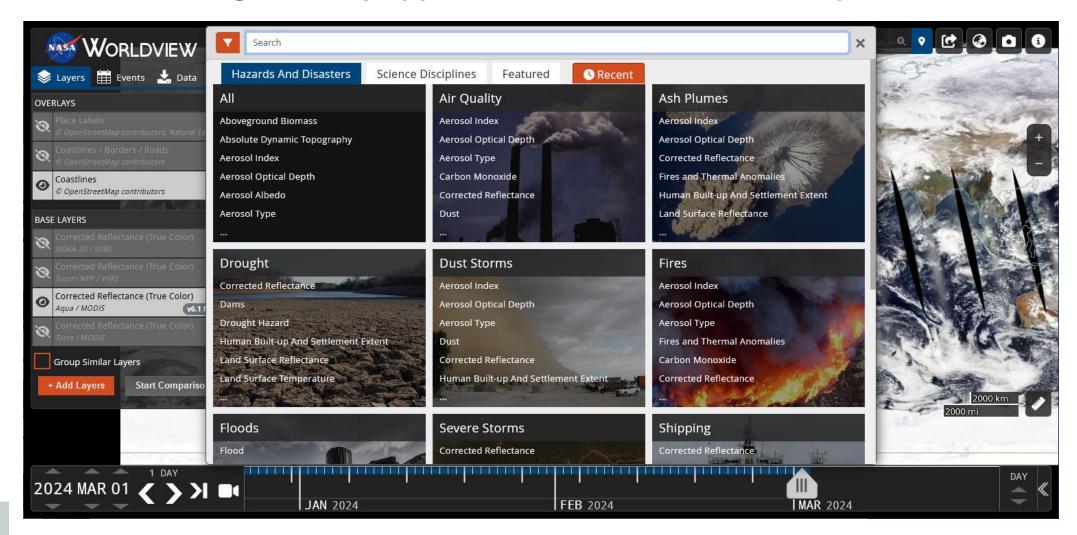
Worldview Controls


Mobile Browser

- 2024 MAR 01

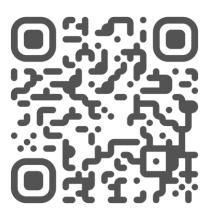
 AA a orldview.earthdata.nasa.gov &

- Search by location
- Share image
- Change projection
- Help/info
- View layers, events
- Add image layers
- Download data
- Zoom via buttons or mobile device pinch
- Choose date & time 🚄
- Create an animation

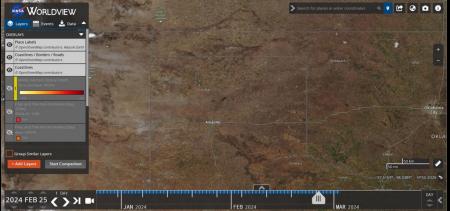

Desktop Browser

Explore Imagery Layers

Organized by application area and science discipline


Worldview Exercise – Part 1

Explore Worldview navigation


- 1. Zoom in and out
- 2. Change the date and see the event evolve
- 3. Examine satellite basemap layers
- 4. Explore available layers
 - Fire detections from MODIS
 - Fire detections from VIIRS
 - Aerosols from MODIS
- 5. Make an animation

Smokehouse Creek Fire, TX Feb 26, 2024

go.nasa.gov/3wON6he

Demo - Worldview

Exercise

Cameron Peak fire

- Wildfire that started near Chambers Lake, Colorado on August 13, 2020
- Fire burned 208,663 acres (326 sq mi.) through the Arapaho and Roosevelt National Forests
- Largest wildfire in Colorado history
- Forced the evacuation of over 6,000 residents
- Exercise:
 - Explore FIRMS & Worldview
 - Adapt GEE code from Eaton Fire (LA) case study
 - Develop your own case study in a domain that aligns with your work experience or personal interests.

Image credit: <u>U.S. Forest Service</u>

Contact Information

m

Trainers:

Sean McCartney
 sean.mccartney@nasa.gov

Erika Podest
 erika.podest@jpl.nasa.gov

Amita Mehta
 amita.v.mehta@nasa.gov

ARSET Website

ARSET YouTube

Thank You!

