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1 Introduction 

This document outlines the theory and methodology for generating the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Level-2 daily daytime and nighttime 1-km land 

surface temperature (LST) and emissivity product using the Temperature Emissivity Separation 

(TES) algorithm. The MODIS-TES (MxD21_L2) product, will include the LST and emissivity for 

three MODIS thermal infrared (TIR) bands 29, 31, and 32, and will be generated for data from the 

NASA-EOS Terra AM (MOD21) and Aqua PM (MYD21) platforms. This is version 1.0 of the 

ATBD and the goal is maintaining a ‘living’ version of this document with changes made when 

necessary. The current standard baseline MODIS LST products (MXD11*) are derived from the 

generalized split-window (SW) algorithm (Wan and Dozier 1996), which produces a 1-km LST 

product and two classification-based emissivities for bands 31 and 32; and a physics-based 

day/night algorithm (Wan and Li 1997), which produces a 5-km (C4) and 6-km (C5) LST product 

and emissivity for seven MODIS bands: 20, 22, 23, 29, 31–33. 

The land surface temperature and emissivity (LST&E) are derived from the surface 

radiance that is obtained by atmospherically correcting the at-sensor radiance. LST&E data are 

used for many Earth surface related studies such as surface energy balance modeling (Zhou et al. 

2003b) and land-cover land-use change detection (French et al. 2008), while they are also critical 

for accurately retrieving important climate variables such as air temperature and relative humidity 

(Yao et al. 2011). The LST is an important long-term climate indicator, and a key variable for 

drought monitoring over arid lands (Anderson et al. 2011a; Rhee et al. 2010). The LST is an input 

to ecological models that determine important variables used for water use management such as 

evapotranspiration and soil moisture (Anderson et al. 2011b). Multispectral emissivity retrievals 

are also important for Earth surface studies. For example, emissivity spectral signatures are 

important for geologic studies and mineral mapping studies (Hook et al. 2005; Vaughan et al. 

2005). This is because emissivity features in the TIR region are unique for many different types of 

materials that make up the Earth’s surface, such as quartz, which is ubiquitous in most of the arid 

regions of the world. Emissivities are also used for land use and land cover change mapping since 

vegetation fractions can often be inferred if the background soil is observable (French et al. 2008). 

Accurate knowledge of the surface emissivity is critical for accurately recovering the LST, 

especially over land where emissivity variations can be large both spectrally and spatially.  
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The MODTES algorithm derives its heritage from the ASTER TES algorithm (Gillespie et 

al. 1998). ASTER is a five-channel multispectral TIR scanner that was launched on NASA’s Terra 

spacecraft in December 1999 with a 90-m spatial resolution and revisit time of 16 days. The 

MxD21 LST&E products will be produced globally over all land cover types, excluding open 

oceans for all cloud-free pixels. The Level-2 products will be merged to produce gridded daily, 

weekly and monthly products, with the monthly product most likely producing global coverage, 

depending on cloud coverage. The generation of the higher level 3 merged products will be 

considered a project activity. The MxD21 Level 2 products will be initially inter-compared with 

the standard MXD11 products to identify regions and conditions for divergence between the 

products, and validation will be accomplished using a combination of temperature-based (T-based) 

and radiance-based (R-based) methods over dedicated field sites.  

Maximum radiometric emission for the typical range of Earth surface temperatures, 

excluding fires and volcanoes, is found in two infrared spectral “window” regions: the midwave 

infrared (3.5–5 µm) and the thermal infrared (8–13 µm). The radiation emitted in these windows 

for a given wavelength is a function of both temperature and emissivity. Determining the separate 

contribution from each component in a radiometric measurement is an ill-posed problem since 

there will always be more unknowns—N emissivities and a single temperature—than the number 

of measurements, N, available. For MODIS, we will be solving for one temperature and three 

emissivities (MODIS TIR bands 29, 31, and 32). To solve the ill-posed problem, an additional 

constraint is needed, independent of the data. There have been numerous theories and approaches 

over the past two decades to solve for this extra degree of freedom. For example, the ASTER 

Temperature Emissivity Working Group (TEWG) analyzed ten different algorithms for solving 

the problem (Gillespie et al. 1999). Most of these relied on a radiative transfer model to correct at-

sensor radiance to surface radiance and an emissivity model to separate temperature and 

emissivity. Other approaches include the SW algorithm, which extends the sea-surface temperature 

(SST) SW approach to land surfaces, assuming that land emissivities in the window region (10.5–

12 µm) are stable and well known. However, this assumption leads to unreasonably large errors 

over barren regions where emissivities have large variations both spatially and spectrally. The 

ASTER TEWG finally decided on a hybrid algorithm, termed the TES algorithm, which capitalizes 

on the strengths of previous algorithms with additional features (Gillespie et al. 1998).  



 MXD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

10 

 

TES is applied to the land-leaving TIR radiances that are estimated by atmospherically 

correcting the at-sensor radiance on a pixel-by-pixel basis using a radiative transfer model. TES 

uses an empirical relationship to predict the minimum emissivity that would be observed from a 

given spectral contrast, or minimum-maximum difference (MMD) (Kealy and Hook 1993; 

Matsunaga 1994). The empirical relationship is referred to as the calibration curve and is derived 

from a subset of spectra in the ASTER spectral library (Baldridge et al. 2009a). A MODIS 

calibration curve, applicable to MODIS TIR bands 29, 31, and 32 will be computed. Numerical 

simulations have shown that TES is able to recover temperatures within 1.5 K and emissivities 

within 0.015 for a wide range of surfaces and is a well-established physical algorithm that produces 

seamless images with no artificial discontinuities such as might be seen in a land classification 

type algorithm (Gillespie et al. 1998). 

The remainder of the document will discuss the MODIS instrument characteristics, provide 

a background on TIR remote sensing, give a full description and background on the TES algorithm, 

provide quality assessment, discuss numerical simulation studies and uncertainty analysis, and, 

finally, outline a validation plan. 

2 MODIS Background 

The MODIS sensors on NASA’s Terra (AM) and Aqua (PM) platforms are currently the 

flagship instruments for global studies of Earth’s surface, atmosphere, cryosphere, and ocean 

processes (Justice et al. 1998; Salomonson et al. 1989). In terms of LST&E products, the strength 

of the MODIS is its ability to retrieve daily data at 1 km for both day- and nighttime observations 

on a global scale.  

2.1 Calibration 

There are now multiple satellite sensors that measure the mid- and thermal infrared 

radiance emitted from the Earth’s surface in multiple spectral channels. These sensors include the 

Advanced Along Track Scanning Radiometer (AATSR), ASTER, Advanced Very High 

Resolution Radiometer (AVHRR), and MODIS instruments. A satellite calibration 

interconsistency study is currently underway for evaluating the interconsistency of these sensors 

at the Lake Tahoe and Salton Sea cal/val sites. This effort has indicated that further work is needed 
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to consistently inter-calibrate the ATSR series and AVHRR series whereas ASTER and MODIS 

have a clearly defined calibration and well-understood performance.  

In-flight performance of TIR radiance data (3–14 µm) used in LST&E products is typically 

determined through comparison with ground validation sites. Well-established automated 

validation sites at Lake Tahoe, CA/NV, and Salton Sea, CA have been used to validate the TIR 

data from numerous sensors including ASTER and MODIS (Hook et al. 2007). Results from this 

work demonstrate that the MODIS (Terra and Aqua) instruments have met their required 

radiometric calibration accuracy of 0.5–1% in the TIR bands used to retrieve LST&E with 

differences of ±0.25% (~0.16K) for the lifetime of the missions. Similar work for ASTER indicates 

its performance also meets the 1% requirements, provided additional steps are taken to account for 

drift between calibrations (Tonooka et al. 2005).  

2.2 Instrument Characteristics 

The MODIS instrument acquires data in 36 spectral channels in the visible, near infrared, 

and infrared wavelengths. Infrared channels 20, 22, 23, 29, 31, and 32 are centered on 3.79, 3.97, 

4.06, 8.55, 11.03, and 12.02 μm respectively. Channels 29, 31, and 32 are the focus of the 

MODTES algorithm. MODIS scans 55° from nadir and provides daytime and nighttime imaging 

of any point on the Earth every 1–2 days with a continuous duty cycle. MODIS data are quantized 

in 12 bits and have a spatial resolution of ~1 km at nadir. They are calibrated with a cold space 

view and full aperture blackbody viewed before and after each Earth view. A more detailed 

description of the MODIS instrument and its potential application can be found in Salomonson et 

al. (1989) and Barnes et al. (1998). The MODIS sensor is flown on the Terra and Aqua spacecraft 

launched in 1999 and 2002, respectively. 

2.3 LST&E Standard Products 

Current standard LST&E products (MOD11 from Terra, and MYD11 from Aqua) are 

generated by two different algorithms: a generalized split-window (GSW) algorithm (product 

MOD11_L2) (Wan and Dozier 1996) that produces LST data at 1-km resolution, and a day/night 

algorithm (product MOD11B1) (Wan and Li 1997) that produces LST&E data at ~5 km (C4) and 

~6 km (C5) resolution.  

The GSW algorithm extends the SST SW approach to land surfaces. In this approach the 

emissivity of the surface is assumed to be known based on an a priori classification of the Earth 
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surface into a selected number of cover types and a dual or multichannel SW algorithm is used in 

much the same way as with the oceans. This approach has been adopted by the MODIS and VIIRS 

emissivity product teams. The MODIS algorithm estimates the emissivity of each pixel by 

consulting the MODIS land cover product (MOD12Q1) whose values are associated with 

laboratory-measured emissivity spectra (Snyder et al. 1998). Adjustments are made for TIR BRDF, 

snow (from MOD10_L2 product), and green vs. senescent vegetation. The a priori approach works 

well for surfaces whose emissivity can be correctly assigned based on the classification but less 

well for surfaces whose emissivities differ from the assigned emissivity. Specifically, it is best 

suited for land-cover types such as dense evergreen canopies, lake surfaces, snow, and most soils, 

all of which have stable emissivities known to within 0.01. It is significantly less reliable over arid 

and semi-arid regions. 

The day/night approach uses pairs of daytime and nighttime observations in seven MODIS 

mid-infrared (MIR) and TIR bands (bands 20, 22, 23, 29, and 31–33) to simultaneously retrieve 

LST&E. This approach was designed to overcome the ill-posed thermal retrieval problem (where 

there are always more unknowns than independent equations in a given sample) by using two 

independent samples of the same target separated in time. The resulting system of equations can 

then be solved, provided several key assumptions are met. These include: a) the difference in 

surface temperature between the two samples must be large; b) the surface conditions (i.e., the 

emissivity spectrum) must not change between day and night samples; c) the geolocation of the 

samples must be highly accurate; and d) emissivity angular anisotropy must not be significant. In 

summary, it assumes that differences in the spectral radiances between the two samples are caused 

by surface temperature change and nothing else. In the MODIS implementation, the cloud-free 

day/night samples must be within 32 days of each other. The day-night approach is more 

complicated to implement due to data storing; however, it is considered preferable to the a priori 

method in areas where emissivity is difficult to accurately predict—most notably in semi-arid and 

arid areas. This algorithm is not well suited for polar regions since the signal-to-noise of 

observations in band 20 of the MIR are unacceptably low. Similarly, this product has limitations 

over very warm targets (e.g., arid and semi-arid regions) due to saturation of the MIR bands. 

Two methods have been used for validating MODIS LST data products; these are a 

conventional T-based method and an R-based method (Wan and Li 2008). The T-based method 

requires ground measurements over thermally homogenous sites concurrently with the satellite 
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overpass, while the R-based method relies on a radiative closure simulation in a clear atmospheric 

window region to estimate the LST from top of atmosphere (TOA) observed brightness 

temperatures, assuming the emissivity is known from ground measurements. The MOD11_L2 

LST product has been validated with a combination of T-based and R-based methods over more 

than 19 types of thermally homogenous surfaces such as lakes (Hook et al. 2007), at dedicated 

field campaign sites over agricultural fields and forests (Coll et al. 2005), playas and grasslands 

(Wan et al. 2004; Wan 2008), and for a range of different seasons and years. LST errors are 

generally within ±1 K for all sites under stable atmospheric conditions except semi-arid and arid 

areas that had errors of up to 5 K (Wan and Li 2008). 

At the University of Wisconsin, a monthly MODIS global infrared land surface emissivity 

database (UWIREMIS) has been developed based on the standard MOD11B1 emissivity product 

(Seemann et al. 2008) at ten wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 m) 

with 5 km spatial resolution. The baseline fit method, based on a conceptual model developed from 

laboratory measurements of surface emissivity, is applied to fill in the spectral gaps between the 

six available MODIS/MYD11 bands. The ten wavelengths in the UWIREMIS emissivity database 

were chosen as hinge points to capture as much of the shape of the higher resolution emissivity 

spectra as possible, and extended by Borbas et al. (2007) to provide 416 spectral points from 3.6 

to 14.3 µm. The algorithm is based on a Principal Component Analyses (PCA) regression using 

the eigenfunction representation of high spectral resolution laboratory measurements from the 

ASTER spectral library (Baldridge et al. 2009a).  
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3 Earth Science Relevance 

LST&E are key variables for explaining the biophysical processes that govern the balances 

of water and energy at the land surface. LST&E data are used in many research areas including 

ecosystem models, climate models, cryospheric research, and atmospheric retrievals schemes. Our 

team has been carefully selected to include expertise in these areas. The descriptions below 

summarize how LST&E data are typically used in these areas.  

3.1 Use of LST&E in Climate/Ecosystem Models 

Emissivity is a critical parameter in climate models that determine how much thermal 

radiation is emitted back to the atmosphere and space and therefore is needed in surface radiation 

budget calculations, and also to calculate important climate variables such as LST (e.g., Jin and 

Liang 2006; Zhou et al. 2003b). Current climate models represent the land surface emissivity by 

either a constant value or very simple parameterizations due to the limited amount of suitable data. 

Land surface emissivity is prescribed to be unity in the Global Climate Models (GCMs) of the 

Center for Ocean-Land-Atmosphere Studies (COLA) (Kinter et al. 1988), the Chinese Institute of 

Atmospheric Physics (IAP) (Zeng et al. 1989), and the US National Meteorological Center (NMC) 

Medium-Range Forecast (MRF). In the recently developed NCAR Community Land Model 

(CLM3) and its various earlier versions (Bonan et al. 2002; Oleson et al. 2004), the emissivity is 

set as 0.97 for snow, lakes, and glaciers, 0.96 for soil and wetlands, and vegetation is assumed to 

be black body. For a broadband emissivity to correctly reproduce surface energy balance statistics, 

it needs to be weighted both over the spectral surface blackbody radiation and over the downward 

spectral sky radiances and used either as a single value or a separate value for each of these terms. 

This weighting depends on the local surface temperatures and atmospheric composition and 

temperature. Most simply, as the window region dominates the determination of the appropriate 

single broadband emissivity, an average of emissivities over the window region may suffice. 

Climate models use emissivity to determine the net radiative heating of the canopy and 

underlying soil and the upward (emitted and reflected) thermal radiation delivered to the 

atmosphere. The oversimplified representations of emissivity currently used in most models 

introduce significant errors in the simulations of climate. Unlike what has been included in climate 

models up to now, satellite observations indicate large spatial and temporal variations in land 

surface emissivity with surface type, vegetation amount, and soil moisture, especially over deserts 
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and semi-deserts (Ogawa 2004; Ogawa et al. 2003). This variability of emissivity can be 

constructed by the appropriate combination of soil and vegetation components. 

Sensitivity tests indicate that models can have an error of 5–20 Wm-2 in their surface energy 

budget for arid and semi-arid regions due to their inadequate treatment of emissivity (Jin and Liang 

2006; Zhou et al. 2003b), a much larger term than the surface radiative forcing from greenhouse 

gases. The provision, through this proposal, of information on emissivity with global spatial 

sampling will be used for optimal estimation of climate model parameters. A climate model, in 

principle, constructs emissivity at each model grid square from four pieces of information: a) the 

emissivity of the underlying soil; b) the emissivity of the surfaces of vegetation (leaves and stems); 

c) the fraction of the surface that is covered by vegetation; and d) the description of the areas and 

spatial distribution of the surfaces of vegetation needed to determine what fraction of surface 

emission will penetrate the canopy. Previously, we have not been able to realistically address these 

factors because of lack of suitable data. The emissivity datasets developed for this project will be 

analyzed with optimal estimation theory that uses the spatial and temporal variations of the 

emissivity data over soil and vegetation to constrain more realistic emissivity schemes for climate 

models. In doing so, land surface emissivity will be linked to other climate model parameters such 

as fractional vegetation cover, leaf area index, snow cover, soil moisture, and soil albedo, as 

explored in Zhou et al. (2003a). The use of more realistic emissivity values will greatly improve 

climate simulations over sparsely vegetated regions as previously demonstrated by various 

sensitivity tests (e.g., Jin and Liang 2006; Zhou et al. 2003b). In particular, both daily mean and 

day-to-night temperature ranges are substantially impacted by the model’s treatment of emissivity. 

3.2 Use of LST&E in Cryospheric Research 

Surface temperature is a sensitive energy-balance parameter that controls melt and energy 

exchange between the surface and the atmosphere. Surface temperature is also used to monitor 

melt zones on glaciers and can be related to the glacier facies of  (Benson 1996), and thus to glacier 

or ice sheet mass balance (Hall et al. 2006). Analysis of the surface temperature of the Greenland 

Ice Sheet and the ice caps on Greenland provides a method to study trends in surface temperature 

as a surrogate for, and enhancement of, air-temperature records, over a period of decades (Comiso 

2006). Maps of LST of the Greenland Ice Sheet have been developed using the MODIS 1-km LST 

standard product, and trends in mean LST have been measured (Hall et al. 2008). Much attention 

has been paid recently to the warming of the Arctic in the context of global warming. Comiso 
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(2006) shows that the Arctic region, as a whole, has been warming at a rate of 0.72 ±0.10C per 

decade from 1981–2005 inside the Arctic Circle, though the warming pattern is not uniform. 

Furthermore, various researchers have shown a steady decline in the extent of the Northern 

Hemisphere sea ice, both the total extent and the extent of the perennial or multiyear ice (Parkinson 

et al. 1999). Increased melt of the margins of the Greenland Ice Sheet has also been reported 

(Abdalati and Steffen 2001). 

Climate models predict enhanced Arctic warming but they differ in their calculations of 

the magnitude of that warming. The only way to get a comprehensive measurement of surface-

temperature conditions over the Polar Regions is through satellite remote sensing. Yet errors in 

the most surface temperature algorithms have not been well-established.  Limitations include the 

assumed emissivity, effect of cloud cover, and calibration consistency of the longer-term satellite 

record.  

Comparisons of LST products over snow and ice features reveal LST differences in 

homogeneous areas of the Greenland Ice Sheet of >2C under some circumstances. Because there 

are many areas that are within a few degrees of 0C, such as the ice-sheet margin in southern 

Greenland, it is of critical importance to be able to measure surface temperature from satellites 

accurately. Ice for which the mean annual temperature is near the freezing point is highly 

vulnerable to rapid melt.  

3.3 Use of LST&E in Atmospheric Retrieval Schemes  

The atmospheric constituent retrieval community and numerical weather prediction 

operational centers are expected to benefit from the development of a unified land surface 

emissivity product. The retrieval of vertical profiles of air temperature and water vapor mixing 

ratio in the atmospheric boundary layer over land is sensitive to the assumptions used about the 

infrared emission and reflection from the surface. Even the retrieval of clouds and aerosols over 

land using infrared channels is complicated by uncertainties in the spectral dependence of the land 

surface emission. Moreover, weather models improve their estimates of atmospheric temperature 

and composition by comparisons between observed and model calculated spectral radiances, using 

an appropriate data assimilation (1D-Var) framework. The model generates forward calculation of 

radiances by use of their current best estimate of temperature profiles, atmospheric composition, 

and surface temperature and emissivity. If good prior estimates of infrared emissivity can be 
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provided along with their error characterization, what would otherwise be a major source of error 

and bias in the use of the satellite radiances in data assimilation can be minimized.  

4 Thermal Infrared Radiative Transfer 

4.1 Thermal Infrared Radiance 

The at-sensor measured radiance in the TIR spectral region (7–14 µm) is a combination of 

three primary terms: the Earth-emitted radiance, reflected downwelling sky irradiance, and 

atmospheric path radiance. The Earth-emitted radiance is a function of temperature and emissivity 

and gets attenuated by the atmosphere on its path to the satellite. The atmosphere also emits 

radiation, some of which reaches the sensor directly as “path radiance,” while some gets radiated 

to the surface (irradiance) and reflected back to the sensor, commonly known as the reflected 

downwelling sky irradiance. Reflected solar radiation in the TIR region is negligible (Figure 1) 

and a much smaller component than the surface-emitted radiance. One effect of the sky irradiance 

is the reduction of the spectral contrast of the emitted radiance, due to Kirchhoff’s law. Assuming 

the spectral variation in emissivity is small (Lambertian assumption), and using Kirchhoff’s law 

to express the hemispherical-directional reflectance as directional emissivity (𝜌𝜆 = 1 − 𝜖𝜆), the 

clear-sky at-sensor radiance can be written as three terms: the Earth-emitted radiance described by 

Planck’s function and reduced by the emissivity factor, 𝜖𝜆; the reflected downwelling irradiance; 

and the path radiance.  

 𝐿𝜆(𝜃) = [𝜖𝜆𝐵𝜆(𝑇𝑠) + (1 − 𝜖𝜆)𝐿𝜆
↓ ]𝜏𝜆(𝜃) + 𝐿𝜆

↑ (𝜃) (1)  
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Figure 1. Simulated atmospheric transmittance for a US Standard Atmosphere (red) and tropical atmosphere 

(blue) in the 3–12 µm region. Also shown is the solar irradiance contribution W/m2/µm2.  

Where: 

𝐿𝜆(𝜃) = at-sensor radiance; 

 𝜆 = wavelength;  

𝜃 = observation angle;  

𝜖𝜆 = surface emissivity;  

𝑇𝑠 = surface temperature;  

𝐿𝜆
↓  = downwelling sky irradiance;  

𝜏𝜆(𝜃) = atmospheric transmittance;  

𝐿𝜆
↑ (𝜃) = atmospheric path radiance 

𝐵𝜆(𝑇𝑠) = Planck function, described by Planck’s law: 

 

 

𝐵𝜆 =
𝑐1
𝜋𝜆5

(
1

exp (
𝑐2

𝜆𝑇
) − 1

) (2)  

 

𝑐1 = 2𝜋ℎ𝑐2= 3.74∙ 10−16 W∙m2 (1st radiation constant) 

h = 6.63∙ 10−34 W∙s2 (Planck’s constant) 

c2 = h∙c/k = 1.44× 104 µm∙K (2nd radiation constant) 

k = 1.38× 10−23 W∙s∙K-1 (Boltzmann’s constant) 

c = 2.99∙ 108 m∙s-1 (speed of light) 
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Figure 2 shows the relative contributions from the surface-emission term, surface radiance, 

and at-sensor radiance for a US Standard Atmosphere, quartz emissivity spectrum, and surface 

temperature set to 300 K. Vertical bars show the center placement of the three MODIS TIR bands 

29 (8.55 µm), 31 (11 µm), and 32 (12 µm). The reflected downwelling term adds a small 

contribution in the window regions but will become more significant for more humid atmospheres. 

The at-sensor radiance shows large departures from the surface radiance in regions where 

atmospheric absorption from gases such as CO2, H2O, and O3 are high. 

 

Figure 2. Radiance simulations of the surface-emitted radiance, surface-emitted and reflected radiance, and 

at-sensor radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz 

emissivity spectrum, surface temperature = 300 K, and viewing angle set to nadir. Vertical bars show 

placements of the MODIS TIR bands 29 (8.55 µm), 31 (11 µm), and 32 (12 µm). 

Equation (1) gives the at-sensor radiance for a single wavelength,𝜆, while the 

measurement from a sensor is typically measured over a range of wavelengths, or band. The at-

sensor radiance for a discrete band, 𝑖, is obtained by weighting and normalizing the at-sensor 
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spectral radiance calculated by Equation (1) with the sensor’s spectral response function for each 

band, 𝑆𝑟𝜆, as follows: 

𝐿𝑖(𝜃) =
∫𝑆𝑟𝜆(i) ∙ 𝐿𝜆(𝜃) ∙ dλ 

𝑆𝑟𝜆(i) ∙ dλ
 (3)   

Using Equations (1) and (3), the surface radiance for band 𝑖 can be written as a 

combination of two terms: Earth-emitted radiance, and reflected downward irradiance from the 

sky and surroundings: 

 
𝐿𝑠,𝑖 = 𝜖𝑖𝐵𝑖(𝑇𝑠) + (1 − 𝜖𝑖)𝐿𝑖

↓ =
𝐿𝑖(𝜃) − 𝐿𝑖

↑(𝜃)

𝜏𝑖(𝜃)
 

(4)  

The atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃), are estimated with a radiative transfer 

model such as RTTOV or MODTRAN (Kneizys et al. 1996) discussed in the next section, using 

input atmospheric fields of air temperature, relative humidity, and geopotential height. Figure 3 

shows MODIS spectral response functions for bands 29 (red), 31 (green) and 32 (blue) plotted 

with a typical transmittance curve for a mid-latitude summer atmosphere.   

 

Figure 3. MODIS spectral response functions for bands 29 (red), 31 (green), and 32 (blue) plotted with a 

typical transmittance curve for a mid-latitude summer atmosphere. 
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4.2 Emissivity 

The emissivity of an isothermal, homogeneous emitter is defined as the ratio of the actual 

emitted radiance to the radiance emitted from a black body at the same thermodynamic temperature 

(Norman and Becker 1995), 𝜖𝜆= 𝑅𝜆 /𝐵𝜆 . The emissivity is an intrinsic property of the Earth’s 

surface and is an independent measurement of the surface temperature, which varies with 

irradiance and local atmospheric conditions. The emissivity of most natural Earth surfaces for the 

TIR wavelength ranges between 8 and 12 μm and, for a sensor with spatial scales <100 m, varies 

from ~0.7 to close to 1.0. Narrowband emissivities less than 0.85 are typical for most desert and 

semi-arid areas due to the strong quartz absorption feature (reststrahlen band) between the 8- and 

9.5-μm range, whereas the emissivity of vegetation, water, and ice cover are generally greater than 

0.95 and spectrally flat in the 8–12-μm range. 

5 Atmospheric Correction 

The general methodology for atmospherically correcting the MODIS TIR data will be 

based largely on the methods that were developed for the ASTER instrument (Palluconi et al. 

1999). However, significant improvements will be made by taking advantage of newly developed 

techniques and more advanced algorithms to improve accuracy. Currently two options for 

atmospheric profile sources are available: 1) interpolation of data assimilated from Numerical 

Weather Prediction (NWP) models, and 2) retrieved atmospheric geophysical profiles from 

remote-sensing data. The NWP models use current weather conditions, observed from various 

sources (e.g., radiosondes, surface observations, and weather satellites) as input to dynamic 

mathematical models of the atmosphere to predict the weather. Data are typically output in 6-hour 

increments, e.g., 00, 06, 12, and 18 UTC. Examples include: the Global Data Assimilation System 

(GDAS) product provided by the National Centers for Environmental Prediction (NCEP) (Kalnay 

et al. 1990); the Modern Era Retrospective-analysis for Research and Applications (MERRA) 

product provided by the Goddard Earth Observing System Data Assimilation System Version 5.2.0 

(GEOS-5.2.0) (Bosilovich et al. 2008); and the European Center for Medium-Range Weather 

Forecasting (ECMWF), which is supported by more than 32 European states. Remote sensing data, 

on the other hand, are available real-time, typically twice daily and for clear-sky conditions. The 

principles of inverse theory are used to estimate a geophysical state (e.g., atmospheric temperature) 
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by measuring the spectral emission and absorption of some known chemical species such as carbon 

dioxide in the thermal infrared region of the electromagnetic spectrum (i.e., the observation). 

Examples of current remote-sensing data include the Atmospheric Infrared Sounder (AIRS) 

(Susskind et al. 2003) and Moderate Resolution Imaging Spectroradiometer (MODIS) (Justice and 

Townshend 2002), both on NASA’s Aqua satellite launched in 2002.  

The standard ASTER atmospheric correction technique, which is operated at the Land 

Processes Distributed Active Archive Center (LP DAAC) at the EROS Center in Sioux Falls, SD, 

uses input atmospheric profiles from the NCEP GDAS product at 1° spatial resolution and 6-hour 

intervals. An interpolation scheme in both space and time is required to characterize the 

atmospheric conditions for an ASTER image on a pixel-by-pixel basis.  

 

5.1 Radiative Transfer Model 

 With the next generation’s state-of-the-art, mid- and long-wave infrared (IR) hyperspectral 

sensors due for launch in the next decade, there has been greater demand for higher resolution and 

quality radiative transfer modeling. The current choice of radiative transfer model for 

atmospherically correcting MODIS TIR data is the latest version of the radiative transfer model 

called RTTOV.  It is a very fast radiative transfer model for nadir-viewing passive visible, infrared 

and microwave satellite radiometers, spectrometers and interferometers (Saunders et al. 1999). 

RTOV is written in FORTRAN-90 code, for simulating satellite radiances, designed to be 

incorporated within users' applications.  RTTOV was originally developed at ECMWF in the early 

90's for TOVS (Eyre and Woolf 1988). Subsequently, the original code has gone through several 

developments (Matricardi et al. 2001; Saunders et al. 1999), more recently within the EUMETSAT 

NWP Satellite Application Facility (SAF), of which RTTOV v11 is the latest version.  It is actively 

developed by ECMWF and UK Met Office. RTTOV has been sufficiently tested and validated and 

is conveniently fast for full scale retrievals (Matricardi 2009).  A number of satellite sensors are 

supported from various platforms  

(e.g. https://nwp-saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/ ). Given 

an atmospheric profile of temperature, water vapor and optionally other trace gases (for example 

ozone and carbon dioxide) together with satellite and solar zenith angles and surface temperature, 

pressure and optionally surface emissivity and reflectance, RTTOV will compute the top of 
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atmosphere radiances in each of the channels of the sensor being simulated. Users can also specify 

the selected channels to be simulated. 

Mathematically, in vector notation, given a state vector, x, which describes the 

atmospheric/surface state as a profile and surface variables the radiance vector, y, for all the 

channels required to be simulated is given by (Saunders et al. 1999): 

 y = H(x) (5)  

where H is the radiative transfer model, i.e. RTTOV (also referred to as the observation operator 

in data assimilation parlance). This is known as the 'direct' or 'forward' model. 

An important feature of the RTTOV model is that it not only performs the fast computation of the 

forward (or direct) clear-sky radiances but also the fast computation of the gradient of the radiances 

with respect to the state vector variables for the input state vector values.   The Jacobian 

matrix H which gives the change in radiance δy for a change in any element of the state 

vector δx assuming a linear relationship about a given atmospheric state x0: 

 δy = H(x0)δx (6)  

The elements of H contain the partial derivatives 
𝜕𝑦𝑖

𝜕𝑥𝑗
(
𝑑𝑦𝑖

𝑑𝑥𝑗
) where the subscript i refers to channel 

number and j to position in state vector. The Jacobian gives the top of atmosphere radiance change 

for each channel from each level in the profile given a unit perturbation at any level of the profile 

vectors or in any of the surface/cloud parameters. It shows clearly, for a given profile, which levels 

in the atmosphere are most sensitive to changes in temperature and variable gas concentrations for 

each channel.  

In RTTOV the transmittances of the atmospheric gases are expressed as a function of profile 

dependent predictors. This parameterization of the transmittances makes the model 

computationally efficient.  The RTTOV fast transmittance scheme uses regression coefficients 

derived from accurate Line by Line computations to express the optical depths as a linear 

combination of profile dependent predictors that are functions of temperature, absorber amount, 

pressure and viewing angle (Matricardi and Saunders, 1999). The regression coefficients are 

computed using a training set of diverse atmospheric profiles chosen to represent the range of 

variations in temperature and absorber amount found in the atmosphere (Matricardi and Saunders, 

1999; Chevallier ,2000; and  Matricardi ,2008, 2009).  The selection of the predictors is made 

according to the coefficients file supplied to the program.   
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Table 1: Geophysical data available in the MERRA analysis product. Columns under Mandatory specify if the 

variables is needed for determining atmospheric correction parameters. Data are output in 6hr analysis for 

42 pressure levels at 0.5 degree x 0.625 degree spatial resolution. 

MERRA Analysis Data (inst6_3d_ana_Np) 

Geophysical fields Required? Available? Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  

nlev nLevel Yes Yes  

p Pressure Yes Yes  

t Air Temperature Yes Yes  

q Specific Humidty Yes Yes  

sp Surface Pressure Yes Yes  

skt Surface Temperature Yes No T value at the first valid level above 

surface is used. 

t2 Temperature at 2 m Yes No T value at the first valid level above 

surface is used 

q2 Specific Humidty at 2 

m 

Yes No Q value at the first valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

el Elevation Yes No Auxiliary database 

 

5.2 Atmospheric Profiles 

5.2.1 MERRA-2 

MERRA-2 is a follow on product to the original MERRA project for the modern satellite era 

(1979-2015). It has been expanded to use new observations including MODIS, AVHRR, GPS 

Radio Occultation, OMI, and MLS. The latest enhancement include improved water vapor 

assimilation resulting in a balance between precipitation and evaporation. Therefore one of the 

major advancement is that it includes land surface forcing by observed precipitation. The MOD21 

algorithm uses the MERRA-2 analysis data for its standard atmospheric correction. MERRA-2 

data are output in 6hr analysis for 42 pressure levels at 0.5 degree x 0.625 degree spatial resolution. 

The MERRA-2 profiles are first interpolated in time to the MODIS observation using the [00 06 

12 18Z] analysis observation hours before ingesting into RTTOV. Table 1 shows MERRA-2  
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Table 2: Geophysical data available in the NCEP GFS analysis product. Columns under Mandatory specify if 

the variables is needed for determining atmospheric correction parameters. Data are output in 3hr analysis 

for 26 pressure levels at 0.5 degree spatial resolution. 

NCEP GSF  Data (NCEP-GFS-03HR-ANC) 

Geophysical fields Required? Available? Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  

nlev nLevel Yes Yes  

p Pressure Yes Yes  

t Air Temperature Yes Yes  

q Specific Humidty Yes Yes  

sp Surface Pressure Yes Yes  

skt Surface Temperature Yes Yes  

t2 Temperature at 2 m Yes No T value at the first valid level above 

surface is used 

q2 Specific Humidty at 2 

m 

Yes No Q value at the first valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

el Elevation Yes No Auxiliary database 

 

geophysical data available in the MERRA-2 analysis product and the variables required for 

the input data into RTTOV for the atmospheric correction.  

 The RTTOV output data of transmittance, path radiance, and sky irradiance are then 

gridded to the MODIS swath at 1-km resolution using a bicubic interpolation approach. It should 

be noted that the data interpolation could potentially introduce errors, especially in humid regions 

where atmospheric water vapor can vary on smaller spatial scales than the native resolution of the 

input MERRA data at 0.5°. The propagation of these atmospheric correction errors would result 

in band-dependent surface radiance errors in both spectral shape and magnitude, which in turn 

could result in errors of retrieved Level-2 products such as surface emissivity and temperature. 

This is one of the main reason that we implement a Water Vapor Scaling (WVS) approach to help 

mitigate these errors.  
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5.2.2 NCEP Global Forecast System (GFS) 

Because MERRA-2 has a data latency of approximately one month, an additional source of 

atmospheric profiles is necessary to produce MxD21 in near real time (NRT) mode in sync with 

the other MODIS science products. For this we use NCEP’s Global Forecast System (GFS). 

MxD21 products produced from this data will become available from the NASA LAADS server 

for the current two months of the mission period and subsequently reprocessed with MERRA-2 

data upon availability and distributed to the NASA LDPAAC. This is to ensure consistency in the 

long-term data record with MERRA-2.  

NCEP’s GFS is produced by the NCEP global forecast system and provides initial and/or 

boundary conditions for NCEP’s other models for regional, ocean and wave prediction systems for 

up to 16 days in advance, but with decreased spatial resolution after 10 days. The Global Data 

Assimilation System (GDAS) uses maximum amounts of satellite and conventional observations 

from global sources and generates initial conditions for the global forecasts. The global data 

assimilation and forecasts are made four times daily at 00, 06, 12 and 18 UTC at 0.5 deg spatial 

resolution. Details of the geophysical variables used are highlighted in Table 2. 

5.2.3 Accuracy Assessment: NCEP versus MERRA2 

In order to better assess and quantify difference in MxD21 retrieval accuracy between 

using either NCEP or MERRA2 data for atmospheric correction, we validated the MYD21 LST 

retrievals with in situ data over Lake Tahoe during 2004, and validated the emissivity retrievals 

from the VIIRS VNP21 product using lab measured spectra of sand samples collected at the Little 

Sahara sand dune site in Utah. In addition we included ECMWF profile data as a third reference.  

The results in Table 3 for Tahoe indicate a very close agreement in LST accuracy in 

terms of bias and RMSE between the three modes with RMSE’s at the 1 K level and biases at the 

1/10 K level. ECMWF had the lowest RMSE (1.06 K) when compared to MERRA2 (1.15 K) and 

NCEP (1.13), while MERRA-2 had the lowest bias when compared to NCEP/ECMWF. ECMWF 

data were never considered for use due to the difficulties in obtaining licence agreements. 

Emissivity matchups at Little Sahara show very close agreement with the lab data for all three 

NWP models, with NCEP and MERRA2 giving slightly better results than ECMWF, and 

matching the closest to within <1% emissivity accuracy of each other. Although not a 

comprehensive intercomparison study, these results nevertheless show reasonable agreement in 
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LST&E retrieval accuracy when using MERRA2 and NCEP data, and the near-real time product 

using NCEP GFS should produce very close to the similar accuracy as the standard product from 

MERRA2. 

Table 3: MYD21 LST validation using matchups with Lake Tahoe in situ data during 2014 for three NWP 

models: ECMWF, MERRA2, NCEP GFS. (Bottom figure): Emissivity spectra matchups between VIIRS (VNP21) 

and lab spectra of sand samples collected at the Little Sahara sand dune validation site in Utah. 

 

 

5.2.4 Transfer Sensitivity Analysis 

The accuracy of the proposed atmospheric correction technique relies on the accuracy of 

the input variables to the model, such as air temperature, relative humidity, and ozone. The 
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combined uncertainties of these input variables need to be known if an estimate of the radiative 

transfer accuracy is to be estimated. These errors can be band-dependent, since different channels  

have different absorbing features and they are also dependent on absolute accuracy of the input 

profile data at different levels. The final uncertainty introduced is the accuracy of the radiative 

transfer model itself; however, this is expected to be small.  

To perform the analysis, four primary input geophysical parameters were input to 

MODTRAN 5.2, and each parameter was changed sequentially in order to estimate the 

corresponding percent change in radiance (Palluconi et al. 1999). These geophysical parameters 

were air temperature, relative humidity, ozone, and aerosol visibility. Two different atmospheres 

were chosen, a standard tropical atmosphere and a mid-latitude summer atmosphere. These two 

simulated atmospheres should capture the realistic errors that we expect to see in humid conditions. 

Typical values for current infrared sounder accuracies (e.g., AIRS) of air temperature and 

relative humidity retrievals in the boundary layer were used for the perturbations: 1) air 

temperature of 2 K, 2) relative humidity of 20%, 3) ozone was doubled, and 4) aerosol visibility 

was changed from rural to urban class. Numerical weather models such as NCEP would most 

likely have larger uncertainties in the 1–2 K range for air temperature and 10–20% for relative 

humidity (Kalnay et al. 1990).  

Table 4 shows the results for three simulated MODIS bands 29, 31, and 32 expressed as 

percent change in radiance (equivalent brightness temperature change in parentheses) for two 

standard atmospheric regimes, tropical and mid-latitude summer. The results show that band 29 is 

in fact most sensitive to perturbations in air temperature, followed by band 31 and 32 for both 

atmospheric profiles, with the mid-latitude profile having larger changes than tropical. For a 20% 

change in humidity the reverse is true, band 32 having the largest change of nearly 3 K for a 

tropical atmosphere, followed by band 31 and 29. This is because band 32 falls closest to strong 

water lines above 12 µm, as shown in Figure 2. Doubling the ozone results in a much larger 

sensitivity for band 5, since it is closest to the strong ozone absorption feature centered around the 

9.5-µm region as shown in Figure 2. Changing the aerosol visibility from rural to urban had a small 

effect on each band but was largest for band 5. Generally, the radiance in the thermal infrared 

region is insensitive to aerosols in the troposphere so, for the most part, a climatology-based 

estimate of aerosols would be sufficient. However, when stratospheric aerosol amounts increase 
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substantially due to volcanic eruptions, for example, then aerosol amounts from future NASA 

remote-sensing missions such as ACE and GEO-CAPE would need to be taken into account.  

Table 4. Percent changes in simulated at-sensor radiances for changes in input geophysical parameters for 

MODIS bands 29, 31, and 32, with equivalent change in brightness temperature in parentheses.  

Geophysical 

Parameter 

Change in 

Parameter 

% Change in Radiance 

(Tropical Atmosphere) 

% Change in Radiance 

(Mid-lat Summer Atmosphere) 

  Band 29 

(8.5 µm) 

Band 31 

(11 µm) 

Band 32 

(12 µm) 

Band 29 

(8.5 µm) 

Band 31 

(11 µm) 

Band 32 

(12 µm) 

Air 

Temperature 

+2 K −2.8 

(1.44 K) 

−1.97 

(1.31 K) 

−1.62 

(1.15 K) 

−3.27 

(1.64 K) 

−2.50 

(1.61 K) 

−2.13 

(1.49 K) 

Relative 

Humidity 

+20% 3.51 

(1.76 K) 

3.91 

(2.54 K) 

4.43 

(3.09 K) 

2.76 

(1.35 K) 

3.03 

(1.93 K) 

3.61 

(2.48 K) 

Ozone × 2 0.69 

(0.35 K) 

0.00 

(0 K) 

0.02 

(0.01 K) 

0.69 

(0.34 K) 

0.00 

(0 K) 

0.02 

(0.02 K) 

Aerosol Urban/Rural 0.42 

(0.21 K) 

0.27 

(0.17 K) 

0.22 

(0.16 K) 

0.43 

(0.21 K) 

0.29 

(0.19 K) 

0.25 

(0.17 K) 

        

It should also be noted, as discussed in Palluconi et al. (1999), that in reality these types of 

errors may have different signs, change with altitude, and/or have cross-cancelation between the 

parameters. As a result, it is difficult to quantify the exact error budget for the radiative transfer 

calculation; however, what we do know is that the challenging cases will involve warm and humid 

atmospheres where distributions of atmospheric water vapor are the most uncertain.  

6 Water Vapor Scaling (WVS) Method 

The accuracy of the TES algorithm is limited by uncertainties in the atmospheric 

correction, which result in a larger apparent emissivity contrast. This intrinsic weakness of the 

TES algorithm has been systemically analyzed by several authors (Coll et al. 2007; Gillespie et al. 

1998; Gustafson et al. 2006; Hulley and Hook 2009b; Li et al. 1999), and its effect is greatest over 

graybody surfaces that have a true spectral contrast that approaches zero. In order to minimize 

atmospheric correction errors, a Water Vapor Scaling (WVS) method has been introduced to 

improve the accuracy of the water vapor atmospheric profiles on a band-by-band basis for each 

observation using an Extended Multi-Channel/Water Vapor Dependent (EMC/WVD) algorithm 

(Tonooka 2005), which is an extension of the Water Vapor Dependent (WVD) algorithm (Francois 

and Ottle 1996). The EMC/WVD equation models the at-surface brightness temperature, given the 

at-sensor brightness temperature, along with an estimate of the total water vapor amount:  
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𝑇𝑔,𝑖 = 𝛼𝑖,0 + ∑ 𝛼𝑖,𝑘𝑇𝑘

𝑛

𝑘=1

 

𝛼𝑖,𝑘 = 𝑝𝑖,𝑘 + 𝑞𝑖,𝑘𝑊 + 𝑟𝑖,𝑘𝑊
2, 

(7)  

where:  

𝑖 Band number 

𝑛 Number of bands 

𝑊 Estimate of total precipitable water vapor (cm) 

𝑝, 𝑞, 𝑟 Regression coefficients for each band 

𝑇𝑘 Brightness temperature for band k (K) 

𝑇𝑔,𝑖 Brightness surface temperature for band, 𝑖 

The coefficients of the EMC/WVD equation are determined using a global-based 

simulation model with atmospheric data from the NCEP Climate Data Assimilation System 

(CDAS) reanalysis project (Tonooka 2005).  

The scaling factor, 𝛾, used for improving a water profile, is based on the assumption that 

the transmissivity, 𝜏𝑖, can be express by the Pierluissi double exponential band model formulation. 

The scaling factor is computed for each gray pixel on a scene using 𝑇𝑔,𝑖 computed from Equation 

(7) and 𝜏𝑖 computed using two different 𝛾 values that are selected a priori:  

 

𝛾𝑖 =

ln(
𝜏𝑖(𝜃, 𝛾2)

𝛾1
𝛽𝑖

𝜏𝑖(𝜃, 𝛾1)𝛾2
𝛽𝑖

∙ (
𝐵𝑖(𝑇𝑔,𝑖) − 𝐿𝑖

↑(𝜃, 𝛾1)/(1 − 𝜏𝑖(𝜃, 𝛾1))

𝐿𝑖 − 𝐿𝑖
↑(𝜃, 𝛾1)/(1 − 𝜏𝑖(𝜃, 𝛾1))

)

𝛾1
𝛽𝑖−𝛾2

𝛽𝑖

)

ln( 𝜏𝑖(𝜃, 𝛾2)/𝜏𝑖(𝜃, 𝛾1))
 

(8)  

where:  

 𝛽𝑖 Band model parameter (Table 5) 

𝛾1, 𝛾2 Two appropriately chosen 𝛾 values 

𝜏𝑖(𝜃, 𝛾1,2) Transmittance calculated with water vapor profile scaled by 𝛾 

𝐿𝑖
↑(𝜃, 𝛾1,2) Path radiance calculated with water vapor profile scaled by 𝛾 

Typical values for 𝛾 are 𝛾1 = 1 and 𝛾2 = 0.7. Tonooka (2005) found that the 𝛾 calculated 

by Equation (8) will not only reduce biases in the water vapor profile, but will also simultaneously 

reduce errors in the air temperature profiles and/or elevation. An example of the water vapor 

scaling factor, 𝛾, is shown in Figure 5 for a MODIS observation on 29 August 2004. 
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Figure 4. MODIS MOD07 total column water vapor (left) and WVS factor, 𝜸, (right) computed using Equation 

(5 and 6) for a MODIS scene cutout on 29 August 2004.  

 

6.1 Scaling Atmospheric Parameters 

6.1.1 Transmittance and Path Radiance 

Once the MODTRAN run has completed and the 𝛾  image has been interpolated and 

smoothed, the atmospheric parameters transmittance 𝜏𝑖  and path radiance 𝐿𝑖
↑  are modified as 

follows: 

 

𝜏𝑖(𝜃, 𝛾) = 𝜏𝑖(𝜃, 𝛾1)

𝛾𝛽𝑖−𝛾2
𝛽𝑖

𝛾1
𝛽𝑖−𝛾2

𝛽𝑖 ∙ 𝜏𝑖(𝜃, 𝛾2)

𝛾1
𝛽𝑖−𝛾𝛽𝑖

𝛾1
𝛽𝑖−𝛾2

𝛽𝑖  
(9)  

 
𝐿𝑖
↑(𝜃, 𝛾) = 𝐿𝑖

↑(𝜃, 𝛾1) ∙
1 − 𝜏𝑖(𝜃, 𝛾)

1 − 𝜏𝑖(𝜃, 𝛾1)
 (10)  

Once the transmittance and path radiance have been adjusted using the scaling factor, the surface 

radiance can be computed using Equation (4). 

6.1.2 Downward Sky Irradiance 

In the WVS simulation model, the downward sky irradiance can be modeled using the path 

radiance, transmittance, and view angle as parameters. To simulate the downward sky irradiance 

in a MODTRAN run, the sensor target is placed a few meters above the surface, with surface 

emission set to zero and view angle set at prescribed values, e.g., Gaussian angles (𝜃 = 0°, 11.6°, 

26.1°, 40.3°, 53.7°, and 65°). In this way, the only radiance contribution is from the reflected 
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downwelling sky irradiance at a given view angle. The total sky irradiance contribution is then 

calculated by summing up the contribution of all view angles over the entire hemisphere: 

 

𝐿𝑖
↓ = ∫ ∫ 𝐿𝑖

↓(𝜃) ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑑𝜃 ∙ 𝑑𝛿

𝜋/2

0

2𝜋

0

 
(11)  

where 𝜃 is the view angle and 𝛿 is the azimuth angle. However, to minimize computational time 

in the MODTRAN runs, the downward sky irradiance can be modeled as a non-linear function of 

path radiance at nadir view: 

 𝐿𝑖
↓(𝛾) = 𝑎𝑖 + 𝑏𝑖 ∙ 𝐿𝑖

↑(0, 𝛾) + 𝑐𝑖𝐿𝑖
↑(0, 𝛾)2 (12)  

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are regression coefficients (Table 6), and 𝐿𝑖
↑(0, 𝛾) is computed by: 

 
𝐿𝑖
↑(0, 𝛾) = 𝐿𝑖

↑(𝜃, 𝛾) ∙
1 − 𝜏𝑖(𝜃, 𝛾)𝑐𝑜𝑠𝜃

1 − 𝜏𝑖(𝜃, 𝛾)
 

(13)  

Tonooka (2005) found RMSEs of less than 0.07 W/m2/sr/µm for ASTER bands 10–14 when using 

Equation (13) as opposed to Equation (12). Figure 6 shows an example of comparisons between 

MODIS band 29 (8.55 µm) atmospheric transmittance (top), path radiance (middle), and computed 

surface radiance (bottom), before and after applying the WVS scaling factor, 𝛾, for the MODIS 

cutout shown in Figure 5. A decrease in transmittance and corresponding increase in path radiance 

values, after scaling over an area in the south of the image, show that the original atmospheric 

water absorption was underestimated using input MODIS MOD07 atmospheric profiles. The result 

is an increase in surface radiance over the bare regions of the Mojave Desert in the south of the 

image due to an increase in reflected downward sky irradiance.  

6.1.3 Band model parameters 

The band model parameter,  𝛽𝑖, in equation 8 is computed using MODTRAN simulations where 

the total water vapor for each profiles is scaled by three different 𝛾 values (𝛾1=0.8, 𝛾2=1.0, 

𝛾3=1.2). For each band, the procedure is as follows: 

 

Given: 

𝛽𝑖: band model parameter value for a given band, i,  in Table 5. 

𝛾1=0.8, 𝛾2=1.0, 𝛾3=1.2, and trnX: transmittance for scaled profile, j, with 𝛾𝑋 
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𝑝1 =

(𝛾3
𝛽𝑖 − 𝛾2

𝛽𝑖)

(𝛾1
𝛽𝑖 − 𝛾2

𝛽𝑖)
 

(14)  

 

 
𝑝2 =

(𝛾1
𝛽𝑖 − 𝛾3

𝛽𝑖)

(𝛾1
𝛽𝑖 − 𝛾2

𝛽𝑖)
 

(15)  

 

Then for each profile, j, 𝑡𝑟𝑛3′ = 𝑡𝑟𝑛1𝑝1 × 𝑡𝑟𝑛2𝑝2 

 

The optimal value of 𝛽𝑖 for all the simulations is then obtained by least squares optimization, i.e. 

 min
𝛽𝑖

∑(𝑡𝑟𝑛3′ − 𝑡𝑟𝑛3)2

𝑗

 

 

(16)  

Table 5. MODIS-Terra band model parameters in Equation (8). 

Band Parameter 

29 𝛽1 =  1.4293 

31 𝛽2 =  1.8203 

32 𝛽3 =  1.8344 

 

Table 6. MODIS-Terra regression coefficients for Equation (12). 

Band a b c 
29 -0.0011 1.7807 -0.0333 

31 -0.0019 1.7106 -0.0545 

32 0.0012 1.7005 -0.0595 
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Figure 5. Comparisons between the atmospheric transmittance (top), path radiance (W/m2/µm−1) (middle), and 

computed surface radiance (W/m2/µm−1) (bottom), before and after applying the WVS scaling factor 𝜸 to a 

MODIS scene cutout shown in Figure 5. Results are shown for MODIS band 29 (8.55 µm). 
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6.2 EMC/WVD Coefficients Calculation 

The EMC/WVD coefficients ( rqp ,, ) in Equation (7) can be determined using a global 

simulation model with input atmospheric data from either radiosonde or numerical weather model 

sources. For this study we used the SeeBor V5.0 radiosounding database provided by the 

University of Wisconsin-Madison (Hook et al. 2013). The SeeBor data consist of 15,704 global 

profiles of uniformly distributed global atmospheric soundings temperature, moisture, and ozone 

at 101 pressure levels for clear sky conditions, acquired both day and night in order to capture the 

full-scale natural atmospheric variability. These profiles are taken from NOAA-88, an ECMWF 

60L training set; TIGR-3; ozonesondes from eight NOAA Climate Monitoring and Diagnostics 

Laboratory (CMDL) sites; and radiosondes from 2004 in the Sahara Desert. The SeeBor data are 

curated with the following quality criteria: For clear sky conditions, the relative humidity (RH) 

value of the profiles must be less than 99% at each level below the 250 hPa pressure level. It is 

also required that the original top of sounding pressure be no greater than 30 hPa for temperature 

and moisture profiles and 10 hPa for ozone. Additionally, for each profile in the dataset, a 

physically based characterization of the surface skin temperature and surface emissivity must be 

assigned. As the radiosondes may drift towards water bodies, we further filtered the data to contain 

at least 50% of the records over land. This reduced the sample size to 9136 data points. When 

classified based upon the local sunrise and sunset times, the day and night profiles are nearly 

equally distributed with counts of 4990 and 4142, respectively. Figure 7 shows the distribution of 

the surface temperature with the total precipitable water in centimeters for the profiles used in the 

simulation. In addition to the quadratic nonlinear relationship, the profiles also capture high 

temperature/low water vapor conditions common to most arid and semi-arid regions. Figure 8 

shows the global distribution of the profiles, with markers distinguishing between day/night 

profiles using sunrise/sunset time at the time of the profile recordings. 
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Figure 6. The total precipitable water versus skin temperature in the SeeBor profile used in the simulation for 

generating view angle and day–night-dependent coefficients. 

 

Figure 7. Global SeeBor radiosonde database showing the distribution of day (red stars) and night (open 

blue circles) profiles used in the generation of the WVS coefficients. 
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6.2.1  Simulations 

In order to perform the simulations, we consider the emissivity spectra from the ASTER 

spectral library consisting of 102 samples that includes a variety of materials such as water, 

snow/ice, vegetation, rocks, soils, and sands. The emissivity of the samples cover a broad range of 

emissivities with even distribution ranging from ~0.6 to 1. The selected spectra are convolved to 

the MODIS spectral response functions for band 29, 31, 32 in order to perform the simulation. A 

total of 931,872 simulations (9136 profiles x 102 samples) are simulated with the RTTOV radiative 

transfer model for the set of 11 Gaussian view angles (between 0-70), and for the three MODIS 

TIR bands. Using the simulated at-sensor kT , and at-surface gT  calculated brightness 

temperatures, and an estimate of the total precipitable water vapor, the best fit coefficients in 

Equation (7) are found by using a linear least squares method, and dependent on four independent 

variables: day/night case, view angle, minimum band emissivity in intervals of 0.05 from 0.6 - 1, 

and precipitable water vapor. As shown in Figure 9, the RMSE between calculated and modeled 

surface brightness temperature for MODIS Aqua band 29 for all view angles is less than 1 K below 

60-degree view angle. The exponential increase in RMSE with higher view angle can be attributed 

to the nonlinear effects of the Planck function due to increase in path length through the atmosphere 

in comparison to the nadir view. The obtained day and night coefficients are applied based on 

whether more than two-thirds of the land pixels are illuminated by the sun as determined by the 

solar zenith angles greater than 85 degrees and vice versa. 

Finally, a four-dimensional look-up table (LUT) is produced consisting of the regression 

coefficients for the three TIR bands and the four independent variables. The EMC/WVD LUT is 

then used on a pixel-by-pixel basis for calculating the Tg (and γ), given estimates of the view angle, 

emissivity, and PWV. Emissivity information from the ASTER Global Emissivity Database (v3) 

(Hulley et al. 2015a)  are used to compute the minimum band emissivity at each MODIS pixel. 

This procedure is explained in detail in the following section. Note that the EMC/WVD 

coefficients are mapped to all MODIS pixels in a granule through bi-cubic interpolation of the 

coefficients derived from the four factors: day/night case, view angle, minimum band emissivity, 

and precipitable water vapor. Bi-cubic interpolation assures smooth transitions in the EMC/WVD 

coefficients across the pixels. 
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6.2.2 ASTER Global Emissivity Dataset (GED) v3  

 The ASTER GED v3 is a global emissivity dataset developed using millions of cloud free 

ASTER retrieved emissivity data over a 9-year period (2000-2008), and aggregated and mosaicked 

to produce a gridded global map. Recently, version 3 of the dataset has been made available that 

provides an average surface emissivity at the five ASTER TIR wavelengths (8.3, 8.6, 9.1, 10.6, 

and 11.3 µm) and for two different resolutions - 3 arc sec (~100 m) and 30 arc sec (~1 km). ASTER 

GEDv3 has been extensively validated in the past over mostly arid and semi-arid regions (Hulley 

and Hook 2009c; Hulley et al. 2015b) with an average absolute band error of ~1% (Hulley et al. 

2015b).  

In order to assign the correct WVS coefficients discussed in the previous section, the ASTER GED 

data have to be first spectrally adjusted to the three MODIS bands 29, 31 and 32. To do this we 

use a regression approach based on a set of laboratory spectra from the ASTER spectral library, 

 

 

Figure 8. The RMSE between calculated and modeled surface brightness temperature for MODIS Aqua 

band 29 are plotted for corresponding view angles considered in the simulation using global radiosonde 

profile data as discussed in the text. The RMSE is less than 1 K for view angles less than 60°. 
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where the ASTER bands chosen in the regression fall closest to the MODIS spectral response 

shapes. The spectral adjust functions are described as follows: 

𝜖(𝑀𝑂𝐷𝐼𝑆)29 = 0.9878 𝜖(𝐴𝑆𝑇𝐸𝑅)11 (17)  

𝜖(𝑀𝑂𝐷𝐼𝑆)31 = 0.4050 𝜖(𝐴𝑆𝑇𝐸𝑅)13 +  0.5945 𝜖(𝐴𝑆𝑇𝐸𝑅)14 +  0.0013 (18)  

𝜖(𝑀𝑂𝐷𝐼𝑆)32 = 0.1175 𝜖(𝐴𝑆𝑇𝐸𝑅)13 +  0.3572 𝜖(𝐴𝑆𝑇𝐸𝑅)14 +  0.5168 (19)  

where, 𝜖(𝑀𝑂𝐷𝐼𝑆)29, 𝜖(𝑀𝑂𝐷𝐼𝑆)31 , and 𝜖(𝑀𝑂𝐷𝐼𝑆)32   are the spectrally adjusted ASTER GED 

emissivity for the MODIS TIR bands 29, 31 and 32, and 𝜖(𝐴𝑆𝑇𝐸𝑅)11 , 𝜖(𝐴𝑆𝑇𝐸𝑅)13 , and 

𝜖(𝐴𝑆𝑇𝐸𝑅)14 are the ASTER GED emissivity values for bands 11, 13 and 14, respectively. The 

regression coefficients are calculated using a wide range of emissivities including rocks, soils, 

vegetation, water and ice emissivity spectra from several spectral libraries and lab measurements, 

including the ASTER spectral library (Baldridge et al. 2009b) and emissivity measurements from 

sand dunes sites (Hulley et al. 2009a).   

 Because the ASTER GEDv3 is a static product, in addition to spectral adjustment, an 

emissivity adjustment is required to account for changes in vegetation phenology and seasonal 

changes in snow cover. This adjustment is done by employing a theoretical relationship between 

emissivity and normalized difference vegetation index (NDVI), as initially proposed by (Valor and 

Caselles 1996). The snow cover fraction adjustment is performed based on the same methodology. 

The specific steps of the adjustment process using MODIS data are detailed in Hulley et al. 

(2015b). For MODIS, data from the global monthly MODIS snow cover 0.05 product 

(MOD10CM), and the MODIS monthly gridded NDVI product (MOD13C2) were used to estimate 

the fractional vegetation and snow cover fractions. These emissivity adjustments are usually 

relatively small (on order of 0.5%-1%) for seasonal changes, but can be large for high frequency 

land disturbances (fires, deforestation, tornadoes etc.).  Figure 10 shows an example of Spectrally 

adjusted ASTER GED emissivity for MODIS band 29. The ASTER GED emissivity (at native 

100 m) has been geolocated onto the MODIS swath (1-km) and has been adjusted for vegetation 

phenology using the MODIS MOD13 NDVI product. This emissivity is consequently used to 

assign the correct WVS coefficient in the computation of surface brightness temperature in 

Equation (7). 



 MXD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

40 

 

 

Figure 9. Spectrally adjusted ASTER GED emissivity for MODIS band 29 (see text for details). The ASTER 

GED emissivity (100 m) has been geolocated onto the MODIS swath (1-km) and has been adjusted for 

vegetation phenology using the MODIS MOD13 NDVI product. 

7 Temperature and Emissivity Separation Approaches 

The radiance in the TIR atmospheric window (8–13 µm) is dependent on the temperature 

and emissivity of the surface being observed according to Planck’s law. Even if the atmospheric 

properties (water vapor and air temperature) are well known and can be removed from Equation 

(1), the problem of retrieving surface temperature and emissivity from multispectral measurements 

is still a non-deterministic process. This is because the total number of measurements available (N 

bands) is always less than the number of variables to be solved for (emissivity in N bands and one 

surface temperature). Therefore, no retrieval will ever do a perfect job of separation, with the 

consequence that errors in temperature and emissivity may co-vary. If the surface can be 
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approximated as Lambertian (isotropic) and the emissivity is assigned a priori from a land-cover 

classification, then the problem becomes deterministic with only the surface temperature being the 

unknown variable. Examples of such cases would be over ocean, ice, or densely vegetated scenes 

where the emissivity is known a priori and spectrally flat in all bands. Another deterministic 

approach is the single-band inversion approach. If the atmospheric parameters are known in 

Equation (1), then the temperature can also be solved for using a single band assuming the 

emissivity is known, usually in the clearest region of the window (~11 µm). Deterministic 

approaches are usually employed with sensors that have one or two bands in the TIR region using 

an SW approach, while non-deterministic approaches are applied to multispectral sensors with 

three or more bands in the TIR so that spectral variations in the retrieved emissivity can be related 

to surface composition and cover, in addition to retrieving the surface temperature. For the MODIS 

MOD21 product, a non-deterministic approach will be used in order to retrieve spectral emissivity 

in bands 29, 31, and 32, in addition to the surface temperature. 

7.1 Deterministic Approaches 

7.1.1 SW Algorithms 

The most common deterministic approach can be employed without having to explicitly 

solve the radiative transfer equation. Two or more bands are employed in the window region 

(typically 10.5–12 µm), and atmospheric effects are compensated for by the differential absorption 

characteristics from the two bands. This approach is used with much success over oceans to 

compute the SST (Brown and Minnett 1999), as the emissivity of water is well known (Masuda et 

al. 1988). Variations of this method over land include the SW approach (Coll and Caselles 1997; 

Prata 1994; Price 1984; Wan and Dozier 1996; Yu et al. 2008), the multichannel algorithm 

(Deschamps and Phulpin 1980), and the dual-angle algorithm (Barton et al. 1989). Over land, the 

assumption is that emissivities in the SW bands being used are stable and well known and can be 

assigned using a land-cover classification map (Snyder et al. 1998). However, this assumption 

introduces large errors over barren surfaces where much larger variations in emissivity are found 

due to the presence of large amounts of exposed rock or soil, often with abundant silicates (Hulley 

and Hook 2009a). Land cover classification maps typically use Visible Near-Infrared (VNIR) data 

for assignment of various classes. This method may work for most vegetation types and over water 

surfaces but, because VNIR reflectances correspond predominately to Fe oxides and OH− and not 
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to the Si-O bond over barren areas, there is little or no correlation with silicate mineralogy features 

in thermal infrared data. This is why, in most classification maps, only one bare land class is 

specified (barren).  

The primary LST product for MODIS (MOD11) currently uses a generalized SW approach 

(Wan and Dozier 1996), where coefficients are stratified according to view angle, total column 

water (TCW), and surface air temperature. Emissivities are assigned a priori based on land cover 

classification maps. The MOD21 LST&E product will not be based on an SW algorithm as in 

MOD11, but will use a non-deterministic multi-spectral approach for the following reasons:  

1. An SW method based on classification is not able to retrieve spectral emissivities of geologic 

surfaces for compositional analysis.  

2. The emissivity of the land surface is in general heterogeneous and is dependent on many 

factors including surface soil moisture, vegetation cover changes, and surface compositional 

changes, which are not characterized by land classification maps.  

3. SW algorithms are inherently very sensitive to measurement noise between bands. 

4. Classification leads to sharp discontinuities and contours in the data between different class 

types, while a physical-based multispectral retrieval will produce seamless emissivity 

images.  

5. Temperature inaccuracies are difficult to quantify over geologic surfaces where constant 

emissivities are assigned. 

7.1.2 Single-Band Inversion 

If the atmosphere is known, along with an estimate of the emissivity, then Equation (1) can 

be inverted to retrieve the surface temperature using one band. Theoretically, any band used should 

retrieve the same temperature, but uncertainties in the atmospheric correction will result in subtle 

differences as different bands have stronger atmospheric absorption features than others that may 

be imperfectly corrected for atmospheric absorption. For example, a band near 8 µm will have 

larger dependence on water vapor, while the 9–10-µm region will be more susceptible to ozone 

absorption. Jimenez-Munoz and Sobrino (2010) applied this method to ASTER data by using 

atmospheric functions (AFs) to account for atmospheric effects. The AFs can be computed by the 

radiative transfer equation or empirically given the total water vapor content. The clearest ASTER 

band (13 or 14) was used to retrieve the temperature, with the emissivity determined using an 
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NDVI fractional vegetation cover approach. A similar procedure has been proposed to retrieve 

temperatures from the Landsat TIR band 6 on ETM+ and TM sensors (Li et al. 2004). The single-

band inversion method has not been proposed for MODIS data for the following reasons: 

1. Inability to retrieve spectral emissivity of geologic surfaces for compositional analysis. This 

will not be possible with the single-band approach, which assigns emissivity based on land 

cover type and vegetation fraction. 

2. Estimating emissivity from an NDVI-derived vegetation cover fraction over arid and semi-

arid regions will introduce errors in the LST because NDVI is responsive only to 

chlorophyll-active vegetation, and does not correlate well with senescent vegetation (e.g., 

shrublands). 

3. Only one-band emissivity is solved for the single-band inversion approach. The MODIS 

MOD21 product will be based on a multispectral retrieval approach. 

7.1.3 Non-deterministic Approaches 

In non-deterministic approaches, the temperature and spectral emissivity are solved using 

an additional constraint or extra degree of freedom that is independent of the data source. These 

types of solutions are also rarely perfect because the additional constraint will always introduce an 

additional level of uncertainty; however, they work well over all surfaces (including arid and semi-

arid) and can automatically account for land surface changes, such as those due to wildfires or 

surface soil moisture. First, we introduce two well-known approaches, the day/night and TISI 

algorithms, followed by an examination of the algorithms and methods that led up to establishment 

of the TES algorithm, which will be used in the MOD21 LST&E product. 

7.1.3.1 Day/Night Algorithm 

The constraint in the day/night algorithm capitalizes on the fact that the emissivity is an 

intrinsic property of the surface and should not change from day- to nighttime observations. The 

day/night algorithm is currently used to retrieve temperature/emissivity from MODIS data in the 

MOD11B1 product (Wan and Li 1997). The method relies on two measurements (day and night), 

and the theory is as follows: Two observations in N bands produce 2N observations, with the 

unknown variables being N-band emissivities, a day- and nighttime surface temperature, four 

atmospheric variables (day and night air temperature and water vapor), and an anisotropic factor, 

giving N + 7 variables. In order to make the problem deterministic, the following conditions must 
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be met: 2N ≥ N+7, or N ≥ 7. For the MODIS algorithm, this can be satisfied by using bands 20, 

22, 23, 29, and 31–33. Although this method is theoretically sound, the retrieval is complicated by 

the fact that two clear, independent observations are needed (preferably close in time) and the 

pixels from day and night should be perfectly co-registered. Errors may be introduced when the 

emissivity changes from day to night observation (e.g., due to condensation or dew), and from 

undetected nighttime cloud. In addition, the method relies on very precise co-registration between 

the day- and nighttime pixel.  

7.1.3.2 Temperature Emissivity Separation Approaches 

During research activities leading up to the ASTER mission, the ASTER TEWG was 

established in order to examine the performance of existing non-deterministic algorithms and 

select one that would be suitable for retrieving the most accurate temperature and/or emissivity 

over the entire range of terrestrial surfaces. This led to the development of the TES algorithm, 

which ended up being a hybrid algorithm that capitalized on the strengths of previous algorithms. 

In Gillespie et al. (1999), ten inversion algorithms were outlined and tested, leading up to 

development of TES. For all ten algorithms, an independent atmospheric correction was necessary. 

The ten algorithms were as follows: 1) Alpha-derived emissivity (ADE) method, 2) Classification 

method, 3) Day-Night measurement, 4) Emissivity bounds method, 5) Graybody emissivity 

method, 6) Mean Min-Max Difference (MMD) method, 7) Model emissivity method, 8) 

Normalized emissivity method (NEM), 9) Ratio Algorithm, and 10) SW algorithm. 

In this document, we will briefly discuss a few of the algorithms but will not expand upon 

any of them in great detail. The Day-Night measurement (3), Classification (2), and SW (10) 

algorithms have already been discussed in section 4.2.1. A detailed description of all ten algorithms 

is available in Gillespie et al. (1999). The various constraints proposed in these algorithms can: 

determine spectral shape but not temperature, use multiple observations (day and night), assume a 

value for emissivity and calculate temperature, assume a spectral shape, or assume a relationship 

between spectral shape and minimum emissivity.  

The NEM removes the downwelling sky irradiance component by assuming an 𝜖𝑚𝑎𝑥 of 

0.99. Temperature is then estimated by inverting the Planck function and a new emissivity found. 

This process is repeated until successive changes in the estimated surface radiances are small. This 

method in itself was not found to be suitable for ASTER because temperature inaccuracies tended 

to be high (>3 K) and the emissivities had incorrect spectral shapes. Other approaches have used 
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a model to estimate emissivity at one wavelength (Lyon 1965) or required that the emissivity be 

the same at two wavelengths (Barducci and Pippi 1996). This introduces problems for 

multispectral data with more than five bands, e.g., ASTER.  

The ADE method (Hook et al. 1992; Kealy et al. 1990; Kealy and Hook 1993) is based on 

the alpha residual method that preserves emissivity spectral shape but not amplitude or 

temperature. The introduced constraint uses an empirical relationship between spectral contrast 

and average emissivity to restore the amplitude of the alpha-residual spectrum and to compute 

temperature. The average emissivity was used in the relationship to minimize band-to-band 

calibration errors. The TEWG used this key feature of the ADE method in TES, although the 

minimum emissivity, rather than the average emissivity, was used in the empirical relationship 

(Matsunaga 1994). The ADE itself was not fully employed for two primary reasons as discussed 

in Gillespie et al. (1999): 1) ADE uses Wien’s approximation, exp(x) − 1 = exp(x), which 

introduces a noticeable “tilt” in the residual spectra that gets transferred to the final emissivity 

spectra; and 2) This issue was easily fixed in the hybrid version of TES. 

Lastly, the temperature-independent spectral indices (TISI) approach (Becker and Li 1990) 

computes relative emissivities from power-scaled brightness temperatures. TISI, however, is band-

dependent and only recovers spectral shape; furthermore, the values are non-unique. To retrieve 

actual emissivities, additional information or assumptions are needed. Other algorithms, which 

only retrieve spectral shape, are the thermal log and alpha residual approach (Hook et al. 1992) 

and spectral emissivity ratios (Watson 1992; Watson et al. 1990). Neither of these was considered 

because they do not recover temperature or actual emissivity values. 

7.2 TES Algorithm 

The final TES algorithm proposed by the ASTER TEWG combined some core features 

from previous algorithms and, at the same time, improved on them. TES combines the NEM, the 

ratio, and the MMD algorithm to retrieve temperature and a full emissivity spectrum. The NEM 

algorithm is used to estimate temperature and iteratively remove the sky irradiance, from which 

an emissivity spectrum is calculated, and then ratioed to their mean value in the ratio algorithm. 

At this point, only the shape of the emissivity spectrum is preserved, but not the amplitude. In 

order to compute an accurate temperature, the correct amplitude is then found by relating the 

minimum emissivity to the spectral contrast (MMD). Once the correct emissivities are found, a 
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final temperature can be calculated with the maximum emissivity value. Additional improvements 

involve a refinement of 𝜖𝑚𝑎𝑥 in the NEM module and refining the correction for sky irradiance 

using the 𝜀𝑚𝑖𝑛-MMD final emissivity and temperature values. Finally, a quality assurance (QA) 

data image is produced that partly depends on outputs from TES such as convergence, final 𝜖𝑚𝑎𝑥, 

atmospheric humidity, and proximity to clouds. More detailed discussion of QA is included later 

in this document. 

Numerical modeling studies performed by the ASTER TEWG showed that TES can 

recover temperatures to within 1.5 K and emissivities to within 0.015 over most scenes, assuming 

well-calibrated, accurate radiometric measurements (Gillespie et al. 1998). 

7.2.1 TES Data Inputs 

Inputs to the TES algorithm are the surface radiance, 𝐿𝑠,𝑖, given by Equation (4) (at-sensor 

radiance corrected for transmittance and path radiance), and downwelling sky irradiance term, 𝐿𝜆
↓  

, which is computed from the atmospheric correction algorithm using a radiative transfer model 

such as MODTRAN. Both the surface radiance and sky irradiance will be output as a separate 

product. The surface radiance is primarily used as a diagnostic tool for monitoring changes in 

Earth’s surface composition. Before the surface radiance is estimated using Equation (4), the 

accuracy of the atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃), is improved upon using a WVS method 

(Tonooka 2005) on a band-by-band basis for each observation using an extended multi-

channel/water vapor dependent (EMC/WVD) algorithm. 

7.2.2 TES Limitations 

As with any retrieval algorithm, limitations exist that depend on measurement accuracy, 

model errors, and incomplete characterization of atmospheric effects. Currently, the largest source 

of uncertainty for ASTER data is the residual effect of incomplete atmospheric correction. 

Measurement accuracy and precision contribute to a lesser degree. This problem is compounded 

for graybodies, which have low spectral contrast and are therefore more prone to errors in 

“apparent” MMD, which is overestimated due to residual sensor noise and incomplete atmospheric 

correction. A threshold classifier was introduced by the TEWG to partly solve this problem over 

graybody surfaces. Instead of using the calibration curve to estimate 𝜀𝑚𝑖𝑛 from MMD, a value of 

𝜀𝑚𝑖𝑛= 0.983 was automatically assigned when the spectral contrast or MMD in emissivity was 
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smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this caused artificial 

step discontinuities in emissivity between vegetated and arid areas.  

At the request of users, two parameter changes were made to the ASTER TES algorithm 

on 1 August 2007, first described in Gustafson et al. (2006). Firstly, the threshold classifier was 

removed as it caused contours and artificial boundaries in the images, which users could not 

tolerate in their analyses. The consequence of removing the threshold classifier was a smoother 

appearance for all images but at the cost of TES underestimating the emissivity of graybody scenes, 

such as water by up to 3% and vegetation by up to 2% (Hulley et al. 2008). The second parameter 

change removed the iterative correction for reflected downwelling radiation, which also frequently 

failed due to inaccurate atmospheric corrections (Gustafson et al. 2006). Using only the first 

iteration resulted in improved spectral shape and performance of TES.  

Figure 11 shows the distribution of LST uncertainties for the MODIS and ASTER TES 

algorithm with respect to TCW and simulated LST for TES+atm (atmospheric uncertainty) and 

TES+atm+wvs (atmospheric uncertainty with WVS) simulation cases. In general the TES+atm 

uncertainties increase with TCW and simulated LST for both types of surfaces and range from 4–

6 K for TCW values greater than 4 cm and LSTs greater than 300 K. The TES+atm+wvs results 

show that applying the WVS method reduces the LST uncertainty at higher TCW contents by more 

than a factor of two, with uncertainties not exceeding 2 K for either type of surface type or sensor. 
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Figure 10. ASTER (left panels) and MODIS (right panels) LST uncertainty distributions plotted versus TCW 

and simulated LST for all end-member surface types (graybody, soils, sands, and rocks), for the TES 

algorithm including atmospheric error (TES+atm) and with the WVS method applied (TES+atm+wvs). 

7.2.3 TES Processing Flow 

Figure 12 shows the processing flow diagram for the generation of the cloud masks, land-

leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 13 shows 

a more detailed processing flow of the TES algorithm itself. Each of the steps will be presented in 

sufficient detail in the following section, allowing users to regenerate the code. TES uses input 

image data of surface radiance, 𝐿𝑠,𝑖, and sky irradiance, 𝐿𝜆
↓ , to solve the TIR radiative transfer 

equation. The output images will consists of three emissivity images (𝜖𝑖) corresponding to MODIS 

bands 29, 31, 32, and one surface temperature image (T).  
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Figure 11. Flow diagram showing all steps in the retrieval process in generating the MODIS MOD21 LST&E 

product starting with TIR at-sensor radiances and progressing through atmospheric correction, cloud 

detection, and the TES algorithm.  
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Figure 12. Flow diagram of the TES algorithm in its entirety, including the NEM, RATIO, and MMD modules. 

Details are included in the text, including information about the refinement of 𝝐𝒎𝒂𝒙. 
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7.2.4 NEM Module 

The NEM builds upon the model emissivity algorithm (Lyon 1965) by allowing the initial 

𝜖𝑚𝑎𝑥 value to be consistent for all wavelengths. The role of NEM is to compute the surface kinetic 

temperature, T, and a correct shape for the emissivity spectrum. An initial value of 0.99 is set for 

𝜖𝑚𝑎𝑥, which is typical for most vegetated surfaces, snow, and water. For geologic materials such 

as rocks and sand, 𝜖𝑚𝑎𝑥 values are set lower than this, typically 0.96, and this value remains fixed. 

For all other surface types, a modification to the original NEM allows for optimization of 𝜖𝑚𝑎𝑥 

using an empirically based process. For the majority of materials in the ASTER spectral library, a 

typical range for 𝜖𝑚𝑎𝑥 is 0.94 < 𝜖𝑚𝑎𝑥 < 1.0. Therefore, for a material at 300 K, the maximum errors 

that NEM temperatures should have are ~±1.5 K, assuming the reflected sky irradiance has been 

estimated correctly. 

7.2.5 Subtracting Downwelling Sky Irradiance 

Generally the effects of sky irradiance are small with typical corrections of <1 K (Gillespie 

et al. 1998). However, the contribution becomes larger for pixels with low emissivity (high 

reflectance) or in humid conditions when the sky is warmer than the surface. Over graybody 

surfaces (water and vegetation), the effects are small because of their low reflectivity in all bands. 

The first step of the NEM module is to estimate ground-emitted radiance, which is found by 

subtracting the reflected sky irradiance from the surface radiance term: 

 𝑅𝑖 = 𝐿𝑠,𝑖
′ − (1 − 𝜖𝑚𝑎𝑥) 𝐿𝜆

↓  (20)  

The NEM temperature, which we call 𝑇𝑁𝐸𝑀, is then estimated by inverting the Planck function for 

each band using 𝜖𝑚𝑎𝑥 and the ground-emitted radiance and then taking the maximum of those 

temperatures. The maximum temperature will most likely be closest to the actual surface 

temperature in the presence of uncompensated atmospheric effects.  

 

𝑇𝑖 =
𝑐2

𝜆𝑖
(𝑙𝑛 (

𝑐1𝜖𝑚𝑎𝑥

𝜋𝑅𝑖𝜆𝑖
5 + 1))

−1

 (21)  

 𝑇𝑁𝐸𝑀 = max (𝑇𝑖) (22)  

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a 

blackbody with a temperature estimated by 𝑇𝑁𝐸𝑀: 

 
𝜖𝑖
′ =

𝑅𝑖

𝐵𝑖(𝑇𝑁𝐸𝑀)
 (23)  
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The new emissivity spectrum is then used to re-calculate 𝑅𝑖
′ = 𝐿𝑠,𝑖

′ − (1 − 𝜖𝑖
′) 𝐿𝜆

↓ , and the process 

is repeated until convergence, which is determined if the change in 𝑅𝑖 between steps is less than a 

set threshold, 𝑡2, which is set as the radiance equivalent to NEΔT of the sensor. The process is 

stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is 

also aborted if the slope of 𝑅𝑖 versus iteration, 𝑐, increases such that  ∆2𝑅′/∆𝑐2  > 𝑡1, where 𝑡1 is 

also set to radiance equivalent of NEΔT for the sensor (0.05 K for MODIS). In this case, correction 

is not possible, TES is aborted, and NEM values of 𝜖𝑖 and 𝑇𝑁𝐸𝑀 are reported in the QA data plane, 

along with an error flag. TES is also aborted and an error flag recorded if, for any iteration, the 

values of 𝜖𝑖  fall out of reasonable limits, set to 0.5 < 𝜖𝑖 < 1.0. See Figure 13 for a detailed 

description of these steps.  

7.2.6 Refinement of 𝝐𝒎𝒂𝒙 

Most pixels at MODIS resolution (1 km) will contain a mixed cover type consisting of 

vegetation and soil, rock and water. The effective maximum emissivity for such pixels will 

therefore vary across the scene and depend on the fractional contribution of each cover type. For 

these cases, the initial 𝜖𝑚𝑎𝑥  = 0.99 may be set to high and refinement of 𝜖𝑚𝑎𝑥  is necessary to 

improve accuracy of 𝑇𝑁𝐸𝑀. The optimal value for 𝜖𝑚𝑎𝑥 minimizes the variance, 𝜈, of the NEM 

calculated emissivities, 𝜖𝑖. The optimization of 𝜖𝑚𝑎𝑥 is only useful for pixels with low emissivity 

contrast (near graybody surfaces) and therefore is only executed if the variance for 𝜖𝑚𝑎𝑥= 0.99 is 

less than an empirically determined threshold (e.g., 𝑉1 = 1.7 × 10−4 for ASTER ) (Gillespie et al. 

1998). If the variance is greater than 𝑉1, then the pixel is assumed to predominately consist of 

either rock or soil. For this case, 𝜖𝑚𝑎𝑥 is reset to 0.96, which is a good first guess for most rocks 

and soils in the ASTER spectral library, which typically fall between the 0.94 and 0.99 range. For 

MODIS the 𝜖𝑚𝑎𝑥 values is set to 0.97, a typical value for bare surfaces in the 12 µm range. If the 

first condition is met, and the pixel is a near-graybody, then values for 𝜖𝑚𝑎𝑥 of 0.92, 0.95, 0.97, 

and 0.99 are used to compute the variance for each corresponding NEM emissivity spectrum. A 

plot of variance 𝜈 versus each 𝜖𝑚𝑎𝑥 value results in an upward-facing parabola with the optimal 

𝜖𝑚𝑎𝑥 value determined by the minimum of the parabola curve in the range 0.9 < 𝜖𝑚𝑎𝑥 < 1.0. This 

minimum is set to a new 𝜖𝑚𝑎𝑥value, and the NEM module is executed again to compute a new 

𝑇𝑁𝐸𝑀. Further tests are used to see if a reliable solution can be found for the refined 𝜖𝑚𝑎𝑥. If the 

parabola is too flat, or too steep, then refinement is aborted and the original 𝜖𝑚𝑎𝑥 value is used. 
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The steepness condition is met if the first derivative (slope of 𝜈 vs. 𝜖𝑚𝑎𝑥) is greater than a set 

threshold (e.g., 𝑉2 = 1.0 × 10−3  for ASTER) and the flatness conditions is met if the second 

derivative is less than a set threshold (e.g., 𝑉3 = 1.0 × 10−3 for ASTER). Finally, if the minimum 

𝜖𝑚𝑎𝑥 corresponds to a very low 𝜈, then the spectrum is essentially flat (graybody) and the original 

𝜖𝑚𝑎𝑥 = 0.99 is used. This condition is met if 𝜈𝑚𝑖𝑛 < 𝑉4 (e.g., 𝑉2 = 1.0 × 10−4). Table 7 shows 

typical output from various stages of the TES algorithm for pixels representing three different 

surface types: sand dunes, vegetated cropland, and semi-vegetated cropland for a MODIS scene 

on 29 August 2004 over the Imperial Valley, southeastern California. Note the different 𝜖𝑚𝑎𝑥 

value for each of these surface types. The dune pixel was set to 0.97 because of high variance in 

the NEM spectrum; the Salton Sea and shrubland pixels were set to 0.983, due to a lower spectral 

contrast.  

Table 7. Output from various stages of the MODTES algorithm for three surface types: sand dunes, Salton 

Sea, and shrubland transition zone for a MODIS test scene over the Imperial Valley, southeastern California.  

 Algodones Dunes Salton Sea Shrubland (transition zone) 

𝝐𝒎𝒂𝒙 0.97 0.983 0.97 

        MMD 0.166 0.006 0.088 

𝝐𝒎𝒊𝒏 0.817 0.975 0.886 

𝑻𝑵𝑬𝑴 327.27 K 304.76 K 325.61 K 

𝑻𝑻𝑬𝑺 326.51 K 304.95 K 325.75 K 

7.2.7 Ratio Module 

In the ratio module, the NEM emissivities are ratioed to their average value to calculate a 

𝛽𝑖 spectrum as follows: 

 𝛽𝑖 =
𝜖𝑖

𝜖̅
 (24)  

Typical ranges for the 𝛽𝑖 emissivities are 0.75 < 𝛽𝑖 < 1.32, given that typical emissivities range 

from 0.7 to 1.0. Errors in the 𝛽𝑖 spectrum due to incorrect NEM temperatures are systematic.  

7.2.8 MMD Module 

In the MMD module, the 𝛽𝑖 emissivities are scaled to an actual emissivity spectrum using 

information from the spectral contrast or MMD of the 𝛽𝑖 spectrum. The MMD can then be related 

to the minimum emissivity, 𝜖𝑚𝑖𝑛, in the spectrum using an empirical relationship determined from 
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lab measurements of a variety of different spectra, including rocks, soils, vegetation, water, and 

snow/ice. From 𝜖𝑚𝑖𝑛, the actual emissivity spectrum can be found by re-scaling the 𝛽𝑖 spectrum. 

First, the MMD of the 𝛽𝑖 spectrum is found by: 

 𝑀𝑀𝐷 = max(𝛽𝑖) − min (𝛽𝑖) (25)  

Then MMD can be related to 𝜖𝑚𝑖𝑛 using a power-law relationship: 

 𝜖𝑚𝑖𝑛 = 𝛼1 − 𝛼2𝑀𝑀𝐷𝛼3, (26)  

where 𝛼𝑗 are coefficients that are obtained by regression using lab measurements. For the three 

MODIS TIR bands between 8 and 12 µm (shown in Figure 2), the values for the coefficients were 

calculated as 𝛼1 = 0.985, 𝛼2 = 0.7503 , and 𝛼3 = 0.8321 . The TES emissivities are then 

calculated by re-scaling the 𝛽𝑖 emissivities: 

 𝜖𝑖
𝑇𝐸𝑆 = 𝛽𝑖 (

𝜖𝑚𝑖𝑛

min (𝛽𝑖)
) (27)  

An example MODTES emissivity output image for band 29 (8.55 µm) is shown in Figure 

14 for an MODIS cutout on 29 August 2004 over the Imperial Valley, southeastern California. 

Bare areas, such as the Algodones Dunes running diagonally across the southwest corner, generally 

have emissivity <0.85, while graybody surfaces such as the Imperial Valley croplands and Salton 

Sea in the southwest corner of the image have higher emissivities, >0.95. Figure 15 shows the 

differences in emissivity spectra between the NEM and TES output for pixels over three different 

surface types (sand dunes, Salton Sea water, and mixed shrubland) for the Imperial Valley cutout. 

Note that, although both NEM and TES have similar spectral shape, the emissivities of NEM are 

generally higher than TES because of the initial estimate of 𝜖𝑚𝑎𝑥  in the NEM module. The 

Algodones Dunes spectrum has high spectral contrast, which is typical for a quartz spectrum that 

has the characteristic quartz doublet in the 8–10-µm region, while the emissivity of water is usually 

spectrally flat, and high. 

For pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of MMD 

calculated from TES is compromised and approaches a value that depends on measurement error 

and residual errors from incomplete atmospheric correction. For ASTER, which has a NEΔT of 

0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was explored 

to correct the apparent MMD using Monte Carlo simulations. For MODIS (NEΔT of 0.05 K), we 

expect measurement errors to be minimal and atmospheric effects to be the largest contribution to 

MMD errors. A further problem for graybody surfaces is a loss of precision for  
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Figure 13. Clockwise from top left: MODIS cutouts of land surface emissivity for band 29 (8.55 µm); band 31 

(11 µm), band 32 emissivity (12 µm), and LST output from the TES algorithm over the Imperial Valley, 

southeastern California on 29 August 2004.  

 

Figure 14. MODIS derived TES and NEM emissivity spectra for three different surface types for the MODIS 

cutout shown in Figure 11: Algodones Dunes, Salton Sea, and shrublands (mixed soil and vegetation). 

Details of the TES and NEM outputs from these spectra are shown in Table 7. 
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low MMD values. This is due to the shape of the power-law curve of 𝜖𝑚𝑖𝑛 vs. MMD at 

low MMD values, where small changes in MMD can lead to large changes in 𝜖𝑚𝑖𝑛. To address 

these issues, the ASTER TEWG initially proposed a threshold classifier for graybody surfaces. 

If MMD < 0.03, the value of 𝜖𝑚𝑖𝑛 in Equation (24) was set to 0.983, a value typical for 

water and most vegetated surfaces. However, this classification was later abandoned as it 

introduced large step discontinuities in most images (e.g., from vegetation to mixed-cover types). 

The consequence of removing the threshold classifier was that, over graybody surfaces, errors in 

emissivity could range from 0.01 to 0.05 (0.5 K to 3 K) due to measurement error and residuals 

errors from atmospheric correction (Gustafson et al. 2006; Hulley and Hook 2009b). For MOD21, 

we use original TES without classification and the WVS method to correct the atmospheric 

parameters on a pixel-by-pixel basis. 

For bare surfaces (rocks, soils, and sand), the error in NEM-calculated T may be as much 

as 2–3 K, assuming a surface at 340 K due to the fixed assumption of 𝜖𝑚𝑎𝑥 = 0.96. This error can 

be corrected by recalculating T using the TES retrieved maximum emissivity, 𝜖𝑚𝑎𝑥
𝑇𝐸𝑆 , and the 

atmospherically corrected radiances, 𝑅𝑖. The maximum emissivity used as correction for reflected 

𝐿𝜆
↓  will be minimal.  

 

𝑇𝑇𝐸𝑆 =
𝑐2

𝜆𝑚𝑎𝑥
(𝑙𝑛 (

𝑐1𝜖𝑚𝑎𝑥
𝑇𝐸𝑆

𝜋𝑅𝑖𝜆𝑚𝑎𝑥
5 + 1))

−1

 (28)  

An example MODTES surface temperature output image is shown in Figure 14. Bare areas 

of the Mojave desert generally have the highest temperatures with T > 330 K, while graybody 

surfaces such as the Imperial Valley croplands and Salton Sea in the southwest corner have the 

coolest temperatures with T < 310 K.  

In the original ASTER TES algorithm, a final correction is made for sky irradiance using 

the TES temperature and emissivities; however, this was later removed, as correction was minimal 

and influenced by atmospheric correction errors. This additional correction is not used for the 

MODTES algorithm.  

7.2.9 MMD vs. 𝝐𝒎𝒊𝒏 Regression 

The relationship between MMD and 𝜖𝑚𝑖𝑛 is physically reasonable and is determined using 

a set of laboratory spectra in the ASTER spectral library v2.0 (Baldridge et al. 2009a) and referred 

to as the calibration curve. The original ASTER regression coefficients were determined from a 
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set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and snow supplied by 

J.W. Salisbury from Johns Hopkins University. One question that needed to be answered was 

whether using a smaller or larger subset of this original set of spectra changed the results in any 

manner. Establishing a reliable MMD vs. 𝜖𝑚𝑖𝑛 relationship with a subset of spectral representing 

all types of surfaces is a critical assumption for the calibration curve. This assumption was tested 

using various combinations and numbers of different spectra (e.g., Australian rocks, airborne data, 

and a subset of 31 spectra from Salisbury), and all yielded very similar results to the original 86 

spectra.  

For MODIS, the original 86 spectra were updated to include additional sand spectra used 

to validate the North American ASTER Land Surface Emissivity Database (NAALSED) (Hulley 

and Hook 2009b) and additional spectra for vegetation from the MODIS spectral library and 

ASTER spectral library v2.0, giving a total of 150 spectra. The data were convolved to the three 

MODIS TIR bands and 𝜖𝑚𝑖𝑛 and 𝛽𝑖 spectra calculated using Equation (21) for each sample. The 

MMD for each spectrum was then calculated from the 𝛽𝑖 spectra and regressed to the 𝜖𝑚𝑖𝑛 values. 

The relationship follows a simple power law given by Equation (23), with regression coefficients 

𝛼1= 0.997, 𝛼2 = 0.7050, and 𝛼3 = 0.7430, and 𝑅2 = 0.987. Figure 16 shows the power-law 

relationship between MMD and 𝜖𝑚𝑖𝑛 using the 150 lab spectra.  

 

Figure 15. MODIS and ASTER calibration curves of minimum emissivity vs. MMD. The lab data (crosses) are 

computed from 150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, water, 

vegetation, and ice). 
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7.2.10 Atmospheric Effects 

The accuracy of the atmospheric correction technique used to estimate the surface radiance 

relies on the accuracy of the variables input to the radiative transfer model (e.g., air temperature, 

relative humidity, and ozone). A sensitivity analysis has shown (Table 4) that a change in 

atmospheric water vapor of 20% leads to a 4.43% change in radiance for MODIS band 12 (12 µm), 

which is the most susceptible to atmospheric absorption and emission of the three MODIS TIR 

bands, while a change in air temperature of 2 K leads to a  −1.6% change in radiance for a tropical 

atmosphere. Changes in ozone and aerosol amount had much smaller effects, except for MODIS 

band 29 (8.55 µm), which falls closer to the ozone absorption region at 9.6 µm. These atmospheric 

errors tend to be highly correlated from band to band, since each channel has a characteristic 

absorbing feature. As a result, the effect on TES output is usually relatively small, but if these 

errors are uncorrelated from band to band then much larger errors can occur, particularly for 

graybodies, where small changes in MMD can significantly alter the shape of the emissivity 

spectrum. For example, over water bodies, errors in emissivity of up to 3% (0.03) have been found 

due to uncompensated atmospheric effects (Hulley and Hook 2009b; Tonooka and Palluconi 

2005).  

One method for improving the accuracy of the surface radiance product is to apply the 

WVS method (Tonooka 2005). Using 183 ASTER scenes over lakes, rivers, and sea surfaces, it 

was found that using the WVS method instead of the standard atmospheric correction improved 

estimates of surface temperature from 3 to 8 K in regions of high humidity (Tonooka 2005). These 

are substantial errors when considering that the required accuracy of the TES algorithm is ~1 K 

(Gillespie et al. 1998).  

Figure 17 shows emissivity spectra over the Salton Sea, showing the effects of applying 

the WVS atmospheric correction method on the shape of the emissivity spectrum when compared 

to using the standard (STD) correction method without WVS. The emissivity spectrum of water is 

high (~0.98) and flat and the results in Figure 17 show a dramatic improvement in emissivity 

accuracy in both magnitude (up to 0.06 for ASTER band 11, and 0.09 for MODIS band 29) and 

spectral shape when using the WVS as opposed to the STD method. Because of the humid day, 

where MOD07 precipitable water vapor (PWV) values were around 4 cm over the water, the 

spectral contrast of the STD emissivity results are overestimated for ASTER and MODIS data. 

However, when applying the WVS method, the ASTER emissivity spectra fall within 0.015 of the 



 MXD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

59 

 

lab-measured spectrum, while MODIS emissivity spectra are within 0.005 at all wavelengths. 

Differences between the 3- and 5-band TES algorithm applied to ASTER data were small. 

 

Figure 16. Emissivity spectra comparisons on June 15, 2000 over the Salton Sea between ASTER (3-band), 

ASTER (5-band), and MODTES, using the TES algorithm along with lab spectra of water from the ASTER 

spectral library. Results from the WVS method and the STD atmospheric correction are also shown. An 

estimate of the PWV from the MOD07 atmospheric product indicates very high humidity on this day. 

8 Advantages of TES over SW approaches 

The LST accuracy of SW algorithms is strongly dependent on emissivity variability (Wan 

and Dozier 1996; Yu et al. 2005). Any errors in the assigned SW classification emissivities can 

translate into large errors in LST. For example, Galve et al. (2008) showed that, on average, a band 

emissivity error of 0.005 (0.5%) will result in an LST error of 0.7 K using the SW approach. The 

sensitivity of the current MODIS GSW algorithm to the view zenith angle is of roughly of the 

same magnitude as emissivity, but can be compensated for by introducing an atmospheric path-

length term, while sensitivity to differences in surface and air temperature are typically much 

smaller, but can be large over bare areas.  

Classification emissivity errors can stem from three main sources: 1) misclassification in 

the original cover type, 2) errors in emissivity within the cover-type map, or 3) a dynamic change 



 MXD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

60 

 

in the cover-type map. A misclassification in cover type will occur when the land class algorithm 

does not classify the true cover type correctly. According to a validation study on MODIS land 

cover product, it was found that the accuracy of individual classes ranged from 60–90% (Strahler 

et al. 2002). Emissivity errors within a cover-type map occur when a class (e.g., barren) does not 

represent the range in emissivities within that class. And lastly, dynamic errors occur after sudden 

natural surface changes, e.g., rainfall, wildfires, or phenological changes, resulting in emissivity 

changes within the land cover type. Error sources 1) and 3) can be grouped together since they 

both arise due to misclassification.  

8.1 Land Cover Misclassification 

The first emissivity error source we investigate arises from land cover misclassification. 

We looked at the effects of a dynamic land cover change on emissivity and LST retrieved values 

after the Station fire in Los Angeles, which burned nearly 161,000 acres of land in the Angeles 

National Forest region from 26 August–19 September 2009. Figure 18 shows emissivity (left 

panels) and LST images (right panels) for ASTER and MODIS data on 10 October 2009. Top and 

middle panels show ASTER and MODIS (MODTES) results using the TES algorithm, and bottom 

panels show the MOD11 band 31 (11 µm) emissivity classification (left) and MOD11 LST (right). 

The Station fire burn area is clearly seen in the center of the ASTER and MODTES results 

as an area of lower emissivity in the longwave region, and is roughly 0.04 (4%) lower than a typical 

value for vegetation of 0.98. This decrease in emissivity is not evident in the MODIS GSW results 

in which the emissivity has been assigned to a forest land cover type with a value of 0.981. The 

ASTER and MODIS TES results show corresponding high LSTs (320–325 K) over the burn 

region, while MOD11 LSTs are 5–12 K lower and range from 312–316 K over the burn scar area 

as shown in Figure 18. This is a direct consequence of not taking the change in emissivity into 

account. This error far exceeds the specification for the MODIS product (1 K) (Wan 1999) and the 

VIIRS product (2.5K) (Yu et al. 2005).  
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Figure 17. Emissivity images (left) and surface temperature images (right) for ASTER (top), MODIS TES 

(MODTES) (center) and MODIS SW (MOD11_L2) (bottom) products over the Station Fire burn scar just north 

of Pasadena, CA. Location of JPL in Pasadena and burn scar area indicated at top right. MODTES and 

ASTER results match closely; however, the MOD11_L2 temperatures are underestimated by as much as 

12 K, due to an incorrect emissivity classification. 

8.2 Emissivity Error within Cover Type 

The second major emissivity error in land-cover–type algorithms occurs when the 

classification is correct, but the emissivities assigned to the class are incorrect. Here we show an 

example over Mauna Loa caldera in Hawaii (Figure 19). The caldera is approximately 5×3 km in 

size and consists of flat, smooth pahoehoe basalt with minimal vegetation (Sabol et al. 2009). 
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Figure 19 shows an ASTER emissivity image (9.1 µm) of the Mauna Loa region on the 5 June 

2000 with the caldera indicated on the map. The accompanying emissivity spectra show ASTER, 

MODTES and MOD11 classification-based emissivities for bands 31 and 32. It is clear the ASTER 

and MODTES spectra match closely and show the characteristic basalt emissivity minima in the 

10.5–11.5 µm region, while the MOD11 classification emissivities are too high by almost 0.1 in 

band 31, and 0.04 in band 32. Consequently there is a large discrepancy of up to 12 K between the 

MODTES and the MOD11 LST product as a result of MOD11 misclassification. This far exceeds 

the specification for the MOD11 product accuracy (1 K) (Wan 1999) and the VIIRS product (2.5 

K) (Yu et al. 2005). 

 
 

Figure 18. (left) ASTER band 12 (9.1 µm) emissivity image over Mauna Loa caldera, Hawaii on 5 June 2000, 

and (right) emissivity spectra from ASTER, MODTES, and MOD11 emissivity classification. While ASTER and 

MODTES agree closely, MOD11 emissivities are too high, resulting in large LST discrepancies between 

MODTES and MOD1 (12 K) due to misclassification in bands 31 (11 µm) and 32 (12 µm). 

8.3 Soil Moisture Effects 

LST errors of this magnitude will occur in a systematic fashion any time that the 

classification emissivities do not reflect the true spectral shape of the surface being measured. 

Other factors contributing to emissivity variability include rainfall, which increases the surface 

soil moisture, and therefore the emissivity due to lower reflectance over bare surfaces.  

An example of the effects of rainfall on the emissivity is shown in Figure 20. Hulley et al. 

(2010) used a case study over the Namib desert to show that the emissivity of bare soils retrieved 

from physical algorithms such as TES and the MODIS day/night algorithm increased by up to 0.03 
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due to soil moisture changes in the thermal bands used by SW algorithms (11 µm), while the SW 

emissivity values were held constant throughout the rainfall period (19–23 April). The MODIS 

SW product had cooler mean temperatures of more than 2 K as a result of not taking into account 

these emissivity changes. Again, a 0.5–1 K LST error can lead to a 10% error in sensible heat flux 

and evapotranspiration, and a 1–3 K error can lead to surface flux errors of up to 100 W/m2 (Yu et 

al. 2005). Other examples of emissivity misclassification could occur due to intra-annual crop 

rotation, where fields may go from bare to fully vegetated over short time periods. 

 

 

Figure 19. (top) Emissivity variation for a rainfall event over the Namib desert showing results from 

MOD11B1 v4 (day/night algorithm), MOD11_L2 (SW), and MODIS TES (MODTES). (bottom) Corresponding 

soil moisture variation from AMSRE-E and rainfall estimates from the Tropical Rainfall Measuring Mission 

(TRMM). It is clear that the physical retrievals, show increases in emissivity due to soil moisture, whereas the 

SW values are held constant throughout the rainfall period from 15–21 April. From Hulley et al. (2010). 
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9 Quality Assessment and Diagnostics 

Please see the MOD21 User Guide for a fully detailed description of the Quality Control and 

Diagnostics available in the product.  
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10 Uncertainty Analysis 

NASA has identified a major need to develop long-term, consistent products valid across 

multiple missions, with well-defined uncertainty statistics addressing specific Earth-science 

questions. These products are termed Earth System Data Records (ESDRs), and LST&E has been 

identified as an important ESDR. Currently a lack of understanding of LST&E uncertainties limits 

their usefulness in land surface and climate models. In this section we present results from an 

LST&E uncertainty simulator that has been developed to quantify and model uncertainties for a 

variety of TIR sensors and LST algorithms (Hulley et al. 2012). Using the simulator, uncertainties 

were estimated for the MOD21 LST&E product, including WVS. These uncertainties are 

parameterized according to view angle and estimated total column water vapor for application to 

real MODIS data. 

10.1 The Temperature and Emissivity Uncertainty Simulator 

A Temperature Emissivity Uncertainty Simulator (TEUSim) has been developed for 

simulating LST&E uncertainties from various sources of error for the TES and SW algorithms in 

a rigorous manner for any appropriate TIR sensor. These include random errors (noise), systematic 

errors (calibration), and spatio-temporally correlated errors (atmospheric). The MODTRAN 5.2 

radiative transfer model is used for the simulations with a global set of radiosonde profiles and 

surface emissivity spectra representing a broad range of atmospheric conditions and a wide variety 

of surface types. This approach allows the retrieval algorithm to be easily evaluated under realistic 

but challenging combinations of surface/atmospheric conditions. The TEUSim is designed to 

separately quantify error contributions from the following potential sources: 

• Noise  

• Model  

• Atmospheric correction  

• Undetected cloud  

• Calibration 

The results presented in this study will focus on the first three of these error sources: noise, 

model, and atmosphere.  
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10.2 Atmospheric Profiles 

The TEUSim uses a global set of atmospheric radiosoundings constructed from the 

University of Wyoming Atmospheric Science Department’s CLAR database (Galve et al. 2008). 

CLAR contains 382 globally distributed radiosoundings for both day and night in 65 layers from 

the surface to 100 km. The CLAR database includes a wide range of TCW estimates up to 7 cm 

and surface air temperature ranging from −20º C to 40º C. Radiosondes acquired from 2003 to 

2006 were distributed over three latitude ranges (40% from 0º–30º, 40% from 30º–60º, 20% above 

60º) and screened for cloud and fog contamination using a procedure described by Francois et al. 

(2002).  

10.3 Radiative Transfer Model 

In TEUSim the latest version of MODTRAN (v5.2) was used for the radiative transfer 

calculations. MODTRAN 5.2 uses an improved molecular band model, termed the Spectrally 

Enhanced Resolution MODTRAN (SERTRAN), which has a much finer spectroscopy (0.1 cm-1) 

than previous versions (1–2 cm-1). This results in higher accuracy in modeling of band absorption 

features in the longwave TIR window regions, and comparisons with line-by-line models has 

shown good accuracy (Berk et al. 2005).  

10.4 Surface End-Member Selection 

A selection of emissivity spectra from the ASTER Spectral Library v2.0 (ASTlib) 

(Baldridge et al. 2009a) were used to define the surface spectral emission term in MODTRAN. A 

total of 59 spectra were chosen based on certain criteria and grouped into four surface 

classifications: rocks (20), soils (26), sands (9), and graybodies (4). The doublets between 8–

9.5 µm and 12.5–13 µm are the result of Si-O stretching, and the exact position of the feature at 

11.2 µm is dependent on the size of the cation paired with the carbonate (CO3) molecule. Spectra 

were chosen to represent the most realistic effective emissivities observed at the remote sensing 

scales of ASTER (90 m) and MODIS (1 km) using the following methodology.  

For rocks, certain spectra were removed prior to processing based on two considerations. 

First, samples that rarely exist as kilometer-scale, sub-aerial end-member exposures on the Earth’s 

surface such as pyroxenite or serpentinite were eliminated. Second, and in parallel, spectrally 

similar samples were eliminated. Spectral similarity was defined by the location, shape, and 
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magnitude of spectral features between 7 and 13 µm. All eliminated samples are represented in the 

final selection through spectrally-similar end-member types. The final rock set included 20 spectra.  

ASTlib includes 49 soil spectra classified according to their taxonomy, such as Alfisol (9), 

Aridisol (14), Entisol (10), Inceptisol (7) and Mollisol (9). Filtering in this case was based solely 

on spectral similarity between each taxonomy type. The final soils set included 26 soil spectra.  

A set of nine emissivity spectra collected in separate field campaigns during 2008 over 

large homogeneous sand dune sites in the southwestern United States in support of validation for 

the NAALSED v2.0 (Hulley et al. 2009b) were used for sands. The sand samples consist of a wide 

variety of different minerals including quartz, magnetite, feldspars, gypsum, and basalt mixed in 

various amounts, and represent a broad range of emissivities in the TIR as detailed in Hulley et al. 

(2009b).  

To represent graybody surfaces, spectra of distilled water, ice, snow, and conifer were 

chosen from ASTlib. Four spectra were sufficient to represent this class since graybody surfaces 

exhibit low contrast and high emissivities. It should be noted that certain types of man-made 

materials were not included, such as aluminum roofs that do not occur at the spatial resolution of 

these sensors, but should be included for higher-spatial-resolution data sets such as those provided 

by airborne instruments. 

10.5 Radiative Transfer Simulations 

In the TEUSim, each CLAR radiosonde profile for each set of end-member spectra was 

used as an input to MODTRAN 5.2. A seasonal rural aerosol was assumed with standard profiles 

for fixed gases within MODTRAN. For MODIS, five viewing angles were used, representing the 

Gaussian angles proposed by Wan and Dozier (1996): 0°, 11.6°, 26.1°, 40.3°, and 53.7°. In the 

WVS simulation model, the downward sky irradiance, 𝐿𝜆 (𝜃), can be modeled using the path 

radiance, transmittance, and view angle. To simulate the downward sky irradiance in MODTRAN, 

the sensor target is placed a few meters above the surface, with surface emission set to zero, and 

view angle set at the prescribed angles above. In this configuration, the reflected downwelling sky 

irradiance is estimated for a given view angle. The total sky irradiance contribution for band i is 

then calculated by summing the contribution of all view angles over the entire hemisphere: 

 

𝐿𝑖
↓ = ∫ ∫ 𝐿𝑖

↓(𝜃) ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑑𝜃 ∙ 𝑑𝛿

𝜋/2

0

2𝜋

0

 
(29)  
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where 𝜃  is the view angle and 𝛿  is the azimuth angle. To minimize computational time, the 

downward sky irradiance is first modeled as a non-linear function of path radiance at nadir view 

using (1) (Tonooka 2001): 

 𝐿𝑖
↓(𝛾) = 𝑎𝑖 + 𝑏𝑖 ∙ 𝐿𝑖

↑(0, 𝛾) + 𝑐𝑖𝐿𝑖
↑(0, 𝛾)2 (30)  

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are regression coefficients, and 𝐿𝑖
↑(0, 𝛾) is computed by: 

 
𝐿𝑖
↑(0, 𝛾) = 𝐿𝑖

↑(𝜃, 𝛾) ∙
1 − 𝜏𝑖(𝜃, 𝛾)𝑐𝑜𝑠𝜃

1 − 𝜏𝑖(𝜃, 𝛾)
 

(31)  

Equations (27) and (28) were used to estimate the downwelling sky irradiance in the TEUSim 

results using pre-calculated regression coefficients for MODIS bands 29, 31, and 32. The reflected 

sky irradiance term is generally smaller in magnitude than the surface-emitted radiance, but needs 

to be taken into account, particularly on humid days when the total atmospheric water vapor 

content is high. The simulated LST is based on the surface air temperature in the CLAR database 

as follows:  

 𝐿𝑆𝑇𝑠𝑖𝑚 = 𝑇𝑎𝑖𝑟 + 𝛿𝑇 (32)  

where 𝐿𝑆𝑇𝑠𝑖𝑚  and 𝑇𝑎𝑖𝑟  are the simulated LST and surface air temperature. Galve et al. (2008) 

found a mean 𝛿𝑇  of +3 K and standard deviation of 9 K from a global study of surface-air 

temperature differences over land in the MODIS MOD08 and MOD11 products. We therefore 

defined 𝛿𝑇 as a random distribution with a mean of 3 K and a standard deviation of 9 K for each 

profile input to MODTRAN. 

The TES algorithm uses surface radiance as input, which can be derived from the 

atmospheric transmittance 𝜏𝜆(𝜃), TOA radiance 𝐿𝜆(𝜃), path radiance 𝐿𝜆
↑ (𝜃), and downward sky 

irradiance 𝐿𝜆
↓ (𝜃). To calculate the various sources of error in LST&E retrievals from TES, these 

variables were simulated for the following conditions:  

1. Perfect atmosphere (i.e., exact inputs): 𝐿𝜆(𝜃) and atmospheric parameters 𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), and 

𝐿𝜆
↓ (𝜃) calculated using a given profile, surface type and viewing angle;  

2. 𝐿𝜆(𝜃) and adjusted atmosphere (i.e., imperfect inputs): 𝜏𝜆
′  (𝜃), 𝐿𝜆

′↑(𝜃), and 𝐿𝜆
′↓(𝜃) calculated 

using perturbed temperature and humidity profiles to simulate real input data;  

3. Adjusted atmosphere as in (2) but with humidity scaled by a factor of 0.7 for deriving inputs 

to the WVS method; and  
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4. 𝐿𝜆(𝜃) calculated using a graybody surface type (conifer was chosen with emissivity close to 

0.99), as the scaling factors in the WVS method are initialized over graybody surfaces.  

The above conditions were run for ‘perfect’ 𝐿𝜆(𝜃) and also with adding random noise to 

the radiances based on the sensor’s noise equivalent delta temperature NET (0.05 K for 

MODIS). 

The WVS method is used for improving the accuracy of the atmospheric parameters output 

from MODTRAN using an EMC/WVD algorithm that models the surface brightness temperature 

(BT) given the at-sensor brightness temperature along with an estimate of the total water vapor 

(Tonooka 2001, 2005). The modeled surface BT is then used to determine a WVS correction factor, 

which for real data is first calculated over all graybody pixels on a given scene and then spatially 

interpolated using an inverse distance method over the remaining non-graybody pixels within the 

scene. Simulation Steps (3) and (4) are needed to simulate the input for the WVS method.  

10.6 Error Propagation 

The set of 382 CLAR radiosonde profiles were adjusted to simulate real data by applying 

estimated uncertainties from the MODIS MOD07 atmospheric product (Seemann et al. 2006; 

Seemann et al. 2003). Using a dataset of 80 clear sky cases over the SGP ARM site (Tobin et al. 

2006), MOD07 air temperature RMS errors showed a linearly decreasing trend from 4 K at the 

surface to 2 K at 700 mb, and a constant 2 K above 700 mb (Seemann et al. 2006). These reported 

values were used to perturb the air temperature profiles at each associated level using a random 

number generator with a mean centered on the RMS error. The uncertainty of the water vapor 

retrievals were estimated to be between 10–20% (Seemann et al. 2006). Accordingly, the relative 

humidity profiles were adjusted by scaling factors ranging from 0.8 to 1.2 in MODTRAN using a 

uniformly distributed random number generator.  

The total LST uncertainty for the TES algorithm based on model, atmospheric and 

measurement noise contributions can be written as: 

 𝛿𝐿𝑆𝑇𝑇𝐸𝑆 = [𝛿𝐿𝑆𝑇𝑀 + 𝛿𝐿𝑆𝑇𝐴 + 𝛿𝐿𝑆𝑇𝑁]1/2 (33)  

where 𝛿𝐿𝑆𝑇𝑀 is the model error due to assumptions made in the TES calibration curve, 𝛿𝐿𝑆𝑇𝐴 is 

the atmospheric error, and 𝛿𝐿𝑆𝑇𝑁 is the error associated with measurement noise. These errors are 

assumed to be independent. 



 MXD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

70 

 

To calculate the separate contributions from each of these errors let us first denote the 

simulated atmospheric parameters as x = [𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), 𝐿𝜆

↓ (𝜃)] and simulated observed radiance 

parameter as 𝑦 = 𝐿𝜆(𝜃). Both 𝑥 and 𝑦 are required to estimate the surface radiance that is input to 

the TES algorithm. In reality, however, the input parameters 𝑥 are not known explicitly, but are 

associated with some error, 𝛿𝑥, which we write as 𝑥̂ = 𝑥 + 𝛿𝑥. Similarly, the observed radiances 

have an associated noise based on the NET of the specific sensor, which we will denote by 𝑦̂. To 

characterize the model error, we express the TES algorithm as a function based on perfect input 

parameters 𝑥 and 𝑦 such that 𝐿𝑆𝑇𝑇𝐸𝑆 = 𝑓(𝑥, 𝑦). The model error, 𝛿𝐿𝑆𝑇𝑀, i.e., due to assumptions 

in the TES algorithm alone, can then be written as: 

 𝛿𝐿𝑆𝑇𝑀 = E[(𝑓(𝑥, 𝑦) − LSTsim)2  𝑥, 𝑦]1/2 (34)  

where LSTsim is the simulated LST used in the MODTRAN simulations, and 𝐸[∙  𝑥, 𝑦] denotes the 

mean-square error between the retrieved and simulated LST for inputs 𝑥 and 𝑦. The atmospheric 

error can be written as the difference between TES using perfect atmospheric inputs, 𝑥  and 

imperfect inputs, 𝑥̂: 

 
𝛿𝐿𝑆𝑇𝐴 = E [(𝑓(𝑥̂, 𝑦) − 𝑓(𝑥, 𝑦))

2
  𝑥, 𝑦]

1/2

 (35)  

And lastly the error due to measurement noise can be written as the difference between TES with 

perfect simulated TOA radiances, 𝑦 and TES with noisy radiances, 𝑦̂: 

 
𝛿𝐿𝑆𝑇𝑁 = E [(𝑓(𝑥, 𝑦̂) − 𝑓(𝑥, 𝑦))

2
  𝑥, 𝑦]

1/2

 (36)  

Since the TES algorithm simultaneously retrieves the LST and spectral emissivity, the above 

equations also apply to the corresponding emissivity retrieval for each band. 

The effects of sensor view angle on the accuracy of MODIS TES retrievals of LST are 

shown in Figure 21. LST uncertainties are plotted against TCW for four simulated Gaussian view 

angles of 0°, 26.1°, 40.3°, and 53.7°. It is clear that the uncertainties become larger with both TCW 

and view angle; however, this is due to TCW in both cases. A TCW amount of 4 cm at a 53.7° 

view angle has an effective TCW of 6.2 cm, due to an increase in atmospheric path length increases 

by a factor of cos-1(53.7°). The LSTs are underestimated at higher view angles by as much as 10 

K, most likely due to unaccounted-for non-linear effects in the radiative transfer process due to 

longer atmospheric pathlengths. For real data, angular anisotropy of surface emissivity will also 

result in higher uncertainties at view angles above ~40° due to non-Lambertian behavior of certain 

types of soils and sands (Snyder et al. 1997), and also from highly structured (3-D) surfaces such 
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as shrublands, savannas, woodlands and forests. This variability primarily arises from the changing 

proportions of scene endmembers visible at different view zenith angles (Yu et al. 2006). 

 

Figure 20. MODIS LST uncertainties using the TES algorithm versus TCW for four viewing Gaussian angles 

of 0°, 26.1°, 40.3°, and 53.7°. The value n represents the number of data points used for a specific land 

surface type, in this case bare surfaces (rocks, soils, sands). 

 

 

 

 

 

 

10.7 Parameterization of Uncertainties  

A key requirement for generating LST&E ESDR from either multiple sensors or algorithms 

is accurate knowledge of uncertainties from the contributing products. Uncertainties for each input 

product must be rigorously estimated for a variety of different conditions on a pixel-by-pixel basis 

before they can be merged and incorporated into a time series of measurements of sufficient length, 

consistency, and continuity to adequately meet the science requirements of an ESDR. Current 

LST&E datasets are available with quality control information, but do not include a full set of 
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uncertainty statistics. For example, the standard ASTER and MODIS LST product QC data planes 

specify qualitative uncertainty information, and MODIS includes a rough estimate of LST&E 

error, but no uncertainty data-planes exist on a pixel-by-pixel basis dependent upon factors such 

as land cover type, view angle, and total column water vapor.  

The next logical step is to apply the uncertainty statistics produced from the TEUSim to 

real data from MOD21 retrievals. To achieve this the total uncertainty, taken as the RMSE of the 

differences between simulated (truth) and retrieved LST&E including atmospheric error, was 

modeled according to view angle, total water vapor column amount, and land surface type using a 

least-squares method fit to a quadratic function. Three surface types were classified: graybody, 

transitional, and bare. The transitional surface represents a mixed cover type, and was calculated 

by varying the vegetation fraction cover percentage, 𝑓𝑣, by 25, 50, and 75% for the set of bare 

surface spectra (rocks, soils, sand) as follows:  

 𝜀𝑡𝑟𝑎𝑛𝑠 = 𝜀𝑔𝑟𝑎𝑦 ∙ 𝑓𝑣 + 𝜀𝑏𝑎𝑟𝑒 ∙ (1 − 𝑓𝑣) (37)  

where 𝜀𝑡𝑟𝑎𝑛𝑠 is the transition emissivity, 𝜀𝑔𝑟𝑎𝑦 is a graybody emissivity spectrum (e.g., conifer), 

and 𝜀𝑏𝑎𝑟𝑒 are the lab emissivities for bare surfaces. 

For MODIS, the total uncertainty includes both a sensor view angle (SVA) and TCW 

dependence. The total uncertainty for MODIS LST can be expressed as: 

 𝛿𝐿𝑆𝑇𝑀𝑂𝐷𝐼𝑆 = 𝑎𝑜 + 𝑎1𝑇𝐶𝑊 + 𝑎2SVA + 𝑎3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎4𝑇𝐶𝑊2

+ 𝑎5𝑆𝑉𝐴2 
(38)  

Similarly, the band-dependent emissivity uncertainties can be expressed as: 

 𝛿𝑖,𝑀𝑂𝐷𝐼𝑆 = 𝑎𝑖,𝑜 + 𝑎𝑖,1𝑇𝐶𝑊 + 𝑎𝑖,2SVA + 𝑎𝑖,3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎𝑖,4𝑇𝐶𝑊2 + 𝑎𝑖,5𝑆𝑉𝐴2 (39)  

where 𝛿𝐿𝑆𝑇 is the LST uncertainty (K) calculated as the difference between the simulated and 

retrieved LST, 𝛿𝑖  is the band-dependent emissivity uncertainty for band i, calculated as the 

difference between the input lab emissivity and retrieved emissivity, and 𝑎𝑖 and 𝑎𝑖,𝑗 are the LST 

and emissivity regression coefficients and depend on surface type (graybody, transition, bare).  

A sensitivity study showed that the parameterizations given by equations 10–13 provided 

the best fit to the simulation results in terms of RMSE, with fits of ~0.1 K. Once the coefficients 

are established they can be applied on a pixel-by-pixel basis across any scene given estimates of 

TCW from either a retrieval (e.g., MODIS MOD07 or AIRS) or a numerical weather model (e.g., 

ECMWF, NCEP), and the SVA from the product metadata. A simple emissivity threshold using a 
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band with large spectral variation can be used to discriminate between graybody, transition, and 

bare types in any given scene for application of the relevant coefficients. 

Figure 22(a) shows the retrieved LST using the TES algorithm with WVS correction and 

corresponding uncertainty in Figure 22(c), while Figure 22(b) shows the retrieved emissivity for 

band 29 and corresponding uncertainty in Figure 22(d). The highest LST uncertainties range from 

2–3 K in the monsoonal region to over 5 K on the edges of cloudy regions, where uncertainties are 

highest as expected. Over most of the scene where TCW values are <2 cm, the LST uncertainties 

are generally <1.5 K. Similar to the LST results, the uncertainties in band 29 emissivity are highest 

over the monsoonal region, ranging from 0.03–0.05, and along the edges of clouds. Over drier 

regions of California and Nevada, there is a stronger uncertainty correlation with cover type, with 

lowest uncertainties over the denser forests of the Sierra Nevadas (~0.015) and slightly higher over 

bare and mixed regions (~0.02). For this scene, retrievals were restricted to view angles <40º, so 

uncertainty dependencies related to view angle are not evident; however, at angles >40º the 

uncertainties for both LST and emissivity increase noticeably due to reasons discussed earlier. 
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Figure 21. MODIS TES retrievals including WVS correction over the southwestern United States on 7 August 

2004: (a) (top left) LST, (b) (top right) emissivity for band 29 (8.55 µm), (c) (bottom left) LST uncertainty, and 

(d) (bottom right) emissivity uncertainty for band 29 (8.55 µm). White areas over land indicate areas of cloud 

that have been masked out using the MOD35 cloud mask product.  
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11 Validation  

Two methods have been established for validating MODIS LST data: a conventional T-

based method and an R-based method (Wan and Li 2008). The T-based method requires ground 

measurements over thermally homogenous sites concurrent with the satellite overpass, while the 

R-based method relies on a radiative closure simulation in a clear atmospheric window region to 

estimate the LST from top of atmosphere (TOA) observed brightness temperatures, assuming the 

emissivity is known from ground measurements. The T-based method is the preferred method, but 

it requires accurate in-situ measurements that are only available from a small number of thermally 

homogeneous sites concurrently with the satellite overpass. The R-based method is not a true 

validation in the classical sense, but it does not require simultaneous in-situ measurements and is 

therefore easier to implement both day and night over a larger number of global sites; however, it 

is susceptible to errors in the atmospheric correction and emissivity uncertainties. The MOD11_L2 

LST product has been validated with a combination of T-based and R-based methods over more 

than 19 types of thermally homogenous surfaces including lakes (Hook et al. 2007), dedicated field 

campaign sites over agricultural fields and forests (Coll et al. 2005), playas and grasslands (Wan 

et al. 2004; Wan 2008), and for a range of different seasons and years. LST errors are generally 

within ±1 K for all sites under stable atmospheric conditions except semi-arid and arid areas, which 

had errors of up to 5 K (Wan and Li 2008).  

Initial testing and validation of the MOD21 emissivity product has shown good agreement 

with the North American ASTER Land Surface Database (NAALSED) v2.0 emissivity product 

(Hulley et al. 2009b) and in-situ data over nine pseudo-invariant sand dune sites in the 

southwestern United States to <0.02 (2%) (Hulley and Hook 2011). NAALSED was validated over 

arid/semi-arid regions using nine pseudo-invariant sand dune sites in the western/southwestern 

United States. The emissivity of samples collected at each of the nine sites was determined in the 

laboratory using a Nicolet 520 FT-IR spectrometer and convolved with the appropriate ASTER 

system response functions. Validation of emissivity data from space ideally requires a site that is 

homogeneous in emissivity at the scale of the imagery, allowing several image pixels to be 

validated over the target site. The nine sand dune validation sites chosen for the ASTER study and 

planned for use with the MOD21 product are: Great Sands National Park, Colorado; White Sands 

National Monument, New Mexico; Kelso Dunes, California; Algodones Dunes, California; 
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Stovepipe Wells Dunes, California; Coral Pink Sand Dunes, Utah; Little Sahara Dunes, Utah; 

Killpecker Dunes, Wyoming; and Moses Lake Basalt Dunes, Washington. 

A validation study at the Land Surface Analysis–Satellite Application Facility (LSA-SAF) 

Gobabeb validation site in Namibia showed that MOD21 LSEs matched closely with in-situ 

emissivity data (~1%), while emissivities based on land cover classification products (e.g., 

SEVIRI, MOD11) overestimated emissivities over the sand dunes by as much as 3.5% (Gottsche 

and Hulley 2012). R-based validation of the MOD21 product is currently underway over nine 

pseudo-invariant sites in southwestern United States, and the Lake Tahoe and Salton Sea sites.  

For the MOD21 product we plan to use in-situ data from a variety of ground sites covering 

the majority of different land-cover types defined in the International Geosphere-Biosphere 

Programme (IGBP). The sites will consist of water, vegetation (forest, grassland, and crops), and 

barren areas (Table 8). 

Table 8. The core set of global validation sites according to IGBP class to be used for validation and 

calibration of the MODIS MOD21 land surface temperature and emissivity product.  

11.1 Water Sites 

For water surfaces, we will use the Lake Tahoe, California/Nevada, automated validation 

site where measurements of skin temperature have been made every two minutes since 1999 and 

are used to validate the mid and thermal infrared data and products from ASTER and MODIS 

(Hook et al. 2007). Water targets are ideal for cal/val activities because they are thermally 

homogeneous and the emissivity is generally well known. A further advantage of Tahoe is that the 

lake is located at high altitude, which minimizes atmospheric correction errors, and is large enough 

to validate sensors from pixel ranges of tens of meters to several kilometers. More recently in 

IGBP Class Sites 

0 Water Tahoe, Salton Sea, CA 

1,2 Needle-leaf forest Krasnoyarsk, Russia; Tharandt, Germany; Fairhope, Alaska 

3,4,5 Broad-leaf/mixed forest Chang Baisan, China; Hainich, Germany; Hilo, Hawaii 

6,7 Open/closed shrublands Desert Rock, NV; Stovepipe Wells, CA 

8,9,10 Savannas/Grasslands Boulder, CO; Fort Peck, MT 

12 Croplands Bondville, IL; Penn State, PA; Sioux Falls, SD; Goodwin Creek, MS 

16 Barren  Algodones Dunes, CA; Great Sands, CO; White Sands, NM; Kelso Dunes, CA; Namib 
Desert, Namibia; Kalahari Desert, Botswana 
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2008, an additional cal/val site at the Salton Sea was established. Salton Sea is a low-altitude site 

with significantly warmer temperatures than Lake Tahoe (up to 35°C), and together they provide 

a wide range of different conditions. The typical range of temperatures at Tahoe is from 5°C to 

25°C. 

Figure 23 shows initial validation of the MOD21 emissivity at Lake Tahoe and the Salton 

Sea. Although the emissivity matches well with the shape of the lab water spectra (black), which 

were extracted from the ASTER spectral library in this case, there is ~1% difference across all 

bands which is due to a limitation of the TES calibration. The emissivities in MOD11 are derived 

from land classification, which is why the emissivity matches exactly the lab spectra at both water 

sites. Figure 24 shows scatterplot and histogram differences between MODIS Aqua 

MYD21/MYD11 LST retrieval and in-situ measurements at Lake Tahoe and Salton Sea for three 

years of MODIS Aqua overpasses. MYD21 performs consistently at both sites with RMSE of ~1 

K, while MYD11 performs better at Tahoe (0.5 K) than at Salton Sea (1.5 K).  

 

 

Figure 22. Figures showing the Emissivity retrievals for the MODIS Aqua MYD21 products over two water 

sites using data collected for three years of data for Lake Tahoe (2003-2005) and Salton Sea (2008-2010). Lab 

data, Lab data convolved with MODIS bands and the MOD11 bands 31 and 32 are also shown for 

comparison.  
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Figure 23. An example of the LST validation applied to the MODIS Aqua MYD11 and MYD21 LST products 

over two water sites using three years of data collected Lake Tahoe (2003-2005) and Salton Sea (2008-2010).   

While MYD11 performs better than MYD21 at Lake Tahoe (0.5 vs 0.9 K), MYD21 performs better at Salton Sea 

(1.2 vs 1.5 K). 

11.2 Pseudo-invariant Sand Dune Sites 

For LST validation over arid regions, we will use a set of six pseudo-invariant, 

homogeneous sand dune sites in the southwestern United States (Hulley et al. 2009b) that were 

used for validating ASTER and MODIS products, and two sites over large sand dune seas in the 

Namib and Kalahari deserts in Southern Africa (Hulley et al. 2009c) for validating AIRS. The 

emissivity and mineralogy of samples collected at these sites have been well characterized and are 

described by Hulley et al. (2009b).  
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Pseudo-invariant ground sites such as playas, salt flats, and claypans have been 

increasingly recognized as optimal targets for the long-term validation and calibration of visible, 

shortwave, and thermal infrared data (Bannari et al. 2005; Cosnefroy et al. 1996; de Vries et al. 

2007; Teillet et al. 1998). We have found that large sand dune fields are particularly useful for the 

validation of TIR emissivity data (Hulley and Hook 2009a). Sand dunes have consistent and 

homogeneous mineralogy and physical properties over long time periods. They do not collect 

water for long periods as playas and pans might, and drying of the surface does not lead to cracks 

and fissures, typical in any site with a large clay component, which could raise the emissivity due 

to cavity radiation effects (Mushkin and Gillespie 2005). Furthermore, the mineralogy and 

composition of sand samples collected in the field can be accurately determined in the laboratory 

using reflectance and x-ray diffraction (XRD) measurements. In general, the dune sites should be 

spatially uniform and any temporal variability due to changes in soil moisture and vegetation cover 

should be minimal. Ideally, the surface should always be dry, since any water on the surface can 

increase the emissivity by up to 0.16 (16%) in the 8.2–9.2-μm range depending on the type of soil 

(Mira et al. 2007).  

11.2.1 Emissivity Validation 

Seasonal changes in vegetation cover, aeolian processes such as wind erosion, deposition 

and transport, and daily variations in surface soil moisture from precipitation, dew, and snowmelt 

are the primary factors that could potentially affect the temporal stability and spatial uniformity of 

the dune sites. Field observations during the spring and early summer of 2008 revealed that the 

major portion of the dune sites was bare, with the exception of Kelso and Little Sahara, which 

contained sparse desert grasses and reeds on the outer perimeter of the dune field and in some 

interdunal areas. Nonetheless, this does not mean the other seven dune sites did not have vegetation 

in the past, since 2000. The presence of soil moisture would result in a significant increase in TIR 

emissivity at the dune sites, caused by the water film on the sand particles decreasing its reflectivity 

(Mira et al. 2007; Ogawa et al. 2006), particularly for MODIS band 29 in the quartz Reststrahlen 

band. However, given that the majority of dune validation sites are aeolian (high winds), at high 

altitude (low humidity), and in semi-arid regions (high skin temperatures), the lifetime of soil 

moisture in the first few micrometers of the surface skin layer as measured in the TIR is most 

likely small due to large sensible heat fluxes and, therefore, high evaporation rates, in addition to 

rapid infiltration. Consequently, we hypothesize that it would most likely take a very recent 
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precipitation event to have any noticeable effect on remote-sensing observations of TIR emissivity 

over these types of areas. 

Figure 25 shows emissivity spectra from sand dune samples collected at ten sand dune 

sites in the southwestern United States. The spectra cover a wide range of emissivities in the TIR 

region. These sites will be the core sites used to validate the emissivity and LST products from 

MODIS.  

 

Figure 24. Laboratory-measured emissivity spectra of sand samples collected at ten pseudo-invariant sand 

dune sites in the southwestern United States. The sites cover a wide range of emissivities in the TIR region. 

Figure 26 show the emissivity retrievals for the MODIS Aqua MOD21 products over six 

pseudo-invariant validation sites for MODIS Aqua MOD21 product. All the validation studies 

were performed with 3 years of MODIS data collected for 2003-2005. As seen in Figure 26, lower 

values of band 29 emissivities (8-9 µm) are typical in the bare sites because of the exposed 

mineralogy. Also included are the lab measurement data, the lab data convolved with MODIS 

bands 29, 31, and 32, and the emissivities for MOD11 bands 31 and 32 are also shown for 

comparison. MOD21 retrieves emissivities at all 3-bands, and are compared with the lab-measured 

emissivity values. Tables 9 show comparison of band 31 emissivity between the laboratory-derived 

emissivities at each site, along with the mean MOD11 and MOD21 emissivities for band 31 

(11 µm).  The emissivity retrievals for MOD21 is closer to the lab values than the MOD11 

emissivities for band 31 because MOD11 assigns emissivities based upon land-classification 

scheme, and are generally higher for bare sites by about 2%. This results into cold bias over bare 

regions for MOD11 LST product, as we will show next.     
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Figure 25. Figures showing the Emissivity retrievals for the MODIS Aqua MYD21 products over six pseudo-

invariant sand dune sites using data collected for three years of data (2003-2005); Lab data, Lab data 

convolved with MODIS bands, and the MOD11 bands 31 and 32 emissivity are also shown for comparison. 
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11.2.2 LST Validation 

For LST validation, we use the R-based validation method (Coll et al. 2009a; Wan and Li 

2008). The advantage of this method is that it does not require in-situ measurements, but instead 

relies on atmospheric profiles of temperature and water vapor over the site and an accurate 

estimation of the emissivity. The R-based method is based on a ‘radiative closure simulation’ with 

input surface emissivity spectra from either lab or field measurements, atmospheric profiles from 

an external source (e.g., model or radiosonde), and the retrieved LST product as input. A radiative 

transfer model is used to forward model these parameters to simulate at-sensor BTs in a clear 

window region of the atmosphere (11–12 µm). The input LST product is then adjusted in 2-K steps 

until two calculated at-sensor BTs bracket the observed BT value. An estimate of the ‘true’ 

temperature (𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑) is then found by interpolation between the two calculated BTs, the 

observed BT, and the initial retrieved LST used in the simulation. The LST error, or uncertainty 

in the LST retrieval is simply found by taking the difference between the retrieved LST product 

and the estimate of 𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑 . This method has been successfully applied to MODIS LST 

products in previous studies (Coll et al. 2009b; Wan and Li 2008; Wan 2008). For MODIS data, 

band 31 (10.78–11.28 µm) is typically used for the simulation since it is the least sensitive to 

atmospheric absorption in the longwave region. The advantage of the R-based method is that it 

can be applied to a large number of global sites where the emissivity is known (e.g., from field 

measurements) and during night- and daytime observations to define the diurnal temperature 

range.  

The archive of all North American MODIS data, as defined by the bounding box 22° to 

71° N and 55° to 169° W, was used in this process for each pseudo-invariant site. Each scene was 

tested to see if it contained the location of interest. Scenes that did not contain the point of interest 

were eliminated, as were scenes in which the point was located either along scene margins (the 

first or last row or column of pixels) or whose viewing angle exceeded 40°. Finally, scenes in 

which the pixel of interest was cloudy, or had greater than three neighboring pixels that were 

cloudy, were eliminated. Cloudiness was defined as less than a 66% certainty that a pixel was clear 

in the M*D35 data. Any scene remaining at this point was used for determination of LST. LST 

data were derived either directly from the M*D11_L2 product or calculated locally using the 

algorithm for the M*D21 product. In the latter case, these calculations were performed using the 

M*D021KM, M*D03, M*D07_L2, M*D10A2, M*D13A2, and M*D35_L2 data as input, as 
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described in Hulley and Hook (2011). In addition to LST, the uncertainty of the value was read 

from the M*D11_L2 data or calculated for the M*D21 data using the values given in Hulley et al. 

(2012). Following LST retrieval, atmospheric profiles over the pseudo-invariant site were obtained 

from either the measurements of the AIRS instrument or from the NCEP GDAS model. Both 

methods were used for MODIS-Aqua data, while only NCEP GDAS data were used for MODIS-

Terra data. Data retrieved for atmospheric profiles were the geopotential heights, temperatures, 

relative humidities, ozone, and pressure for each geopotential height level of the profile, and the 

PWV for the column as a whole. Together with the original land surface temperature from M*D11, 

these values were then used as input to MODTRAN 5.2 to calculate the Top Of Atmosphere 

Radiance. 

Wan and Li (2008) proposed a quality check to assess the suitability of the atmospheric 

profiles by looking at differences between observed and calculated BTs in two nearby window 

regions with different absorption features. For example, the quality check for MODIS bands 31 

and 32 at 11 and 12 µm is:  

 𝛿(𝑇11 − 𝑇12) = (𝑇11
𝑜𝑏𝑠 − 𝑇12

𝑜𝑏𝑠) − (𝑇11
𝑐𝑎𝑙𝑐 − 𝑇12

𝑐𝑎𝑙𝑐) (40)  

where: 𝑇11
𝑜𝑏𝑠 and 𝑇12

𝑜𝑏𝑠 are the observed brightness temperatures at 11 and 12 µm respectively, and 

𝑇11
𝑐𝑎𝑙𝑐 and 𝑇12

𝑐𝑎𝑙𝑐 are the calculated brightness temperatures from the R-based simulation at 11 and 

12 µm respectively. If 𝛿(𝑇11 − 𝑇12) is close to zero, then the assumption is that the atmospheric 

temperature and water vapor profiles are accurately representing the true atmospheric conditions 

at the time of the observation, granted the emissivity is already well known. Because water vapor 

absorption is higher in the 12-µm region, negative residual values of 𝛿(𝑇11 − 𝑇12) imply the R-

based profiles are overestimating the atmospheric effect, while positives values imply an 

underestimation of atmospheric effects. A simple threshold can be applied to filter out any 

unsuitable candidate profiles for validation. Although Wan and Li (2008) proposed a threshold of 

±0.3 K for MODIS data, we performed a sensitivity analysis and found that a threshold of ±0.5 K 

resulted in a good balance between the numbers of profiles accepted and accuracy of the final R-

based LST. 

Figure 27 show scatterplots of MODIS retrieved LST (MOD11 in red squares and MOD21 

in blue-diamonds) versus the R-based LST for six pseudo-invariant sites using all MODIS Aqua 

data from 2003-2005. The results on the bare sites show that the MOD11 SW LST algorithm 
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underestimates the LST by about 3–4 K at all sites except White Sands, while the MOD21 

algorithm has biases around 1 K.  

 Figure 28 show the histogram plots of MOD11 and MOD21 LST retrievals. As we 

observed in Figure 26, MOD11 assigns fixed emissivity for the bare surfaces which is the primary 

reason for LST bias in MOD11 while MOD21 simultaneously retrieves the LST&E using physics-

based TES method. The distribution shows a constant “cold” biased LST retrievals for MOD11 

over the bare pseudo-invariant sand dune sites, while MOD21 retrievals are consistently 

distributed around the mean biases close to zero and RMSE's of ~1 K.  
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Figure 26. An example of the R-based validation method applied to the MODIS Aqua MYD11 and MYD21 LST 

products over six pseudo-invariant sand dune sites using all data during 2003-2005. AIRS profiles and lab-

measured emissivities from samples collected at the sites were used for the R-based simulations.  
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Figure 27. Histogram error plots showing validation of the R-based method applied to the MODIS Aqua 

MYD11 and MYD21 LST products over six pseudo-invariant sand dune sites using all data during 2003-2005.   
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11.3 Vegetated Sites 

For initial testing of the MOD21 product, we used R-based validation over Redwood and 

Texas Grassland sites.  While pseudo-invariant sand dune sites are ideal for R-based validation 

studies as their emissivity features stay relatively consistent over time in the absence of soil 

moisture (Hulley and Hook 2009b), special care should be taken over grassland sites that may 

undergo seasonal or inter-annual changes in vegetation phenology. Also any land surface 

disturbance such as loss of vegetation by fire or soil exposure from land degradation could cause 

an error in the validation results that assume a constant emissivity of the surface over time. In order 

to demonstrate the emissivity stability at the Texas Grassland site, we use MODIS band 31 

emissivity over the 3-year period, and compare the band 31 emissivity retrieval with Algodones 

Dunes site. (Figure. 29). The two-sample running mean time series show relatively small 

fluctuations with standard deviation (stdev) of ~0.007 is observed at Algodones and Texas 

Grassland sites over the 3-year validation period. This is equivalent to ~0.2 K error in the R-based 

validation method (Hulley and Hook 2012). The histograms on the margins show consistent high 

density of the data around the mean for each of the sites. Also small standard deviation of 0.007, 

and 0.006 at Texas Grassland and Algodones Dunes indicate adequate stability of the retrievals 

over the sites, and therefore using constant in situ emissivity inputs into the R-based validation 

simulations for both sites are justified (Malakar and Hulley 2016).   

 

 

Figure 28. MYD21 Emissivity retrievals for band 31 at the two sites show small fluctuations within the error 

range of 1% from the mean values. The histograms on the margins show a consistently high density of the 

data around the mean for each of the sites.  

 



 MXD21 LAND SURFACE TEMPERATURE AND EMISSIVITY ATBD 

 

88 

 

Figure 30 (a & b) show scatterplots of MODIS retrieved LST (MOD11 in red squares and 

MOD21 in blue-diamonds) versus the R-based LST for Redwood and Texas Grassland sites using 

all MODIS data from 2003-2005. Figure 30 (c & d) show the histogram plots of MOD11 and 

MOD21 LST retrievals. The distributions show both the MOD11 and the MOD21 algorithm have 

RMSE's of around 1 K, with MOD11 having a slight cold bias and MOD21 slight warm bias.  

 

Figure 29. R-based validation for MODIS Aqua MYD11 and MYD21 LST products over Redwood and Texas 

Grassland sites (a, b) using three years of data collected (2003-2005). The bottom panels (c,d) show the 

histogram of the distribution of the LST error for both products showing comparable performances at the 1 

K level in RMSE, although MYD21 is biased warms while MYD11 is biased cold. 

11.4 Validation Summary 

Table 9 shows comparison of the band 31 emissivity retrievals between MOD21, MOD11 

and lab values. The MOD11 emissivity tend to assign about 2% higher in the bare sites. MOD21 
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retrieves LST&E simultaneously, and performs consistently better than MOD11 over the bare sites 

when compared to lab spectra. Since MOD11 assigns fixed emissivities based upon the land class 

information, the water and vegetation sites are relatively more accurate (Table 9).  

Figure 32 shows a summary histograms of the MODIS LST retrievals using RMSE at the 

ten validation sites comprising various kinds of land surface types and wide range of atmospheric 

characteristics are shown. The corresponding bias and RMSE for MYD21 and MYD11 LST 

products are also summarized in Table 10.  The RMSEs in the bare sites are generally higher, 

reaching up to 4 .1 K for some of the bare sites such as Great Sands, Kelso, and Killpecker. The 

MYD21 and MYD11 have comparable accuracies for the vegetation and water sites, ~1 K. The 

reason for the MYD11 cold bias is due to the assignment of emissivity for barren surfaces (~0.96 

at 11 µm). This causes large LST errors over bare sites where variations in surface composition 

over bare regions results in emissivities lower than that fixed value. The MxD21 algorithm, on the 

other hand, physically retrieves the spectral emissivity in MODIS bands 29, 31, and 32, along with 

the LST, and this results in more accurate LST results, particularly over bare regions where 

emissivity variations can be large, both spatially and spectrally.   

 

Table 9. Emissivity comparisons between lab, MYD11, and MYD21 at six sand sites for band 31. 

  Emissivity % error 

Sites Lab MOD11 MOD21 MOD11-Lab MOD21-Lab 

Algodones   0.94 0.97 0.95 2.3 0.6 

Great Sands  0.94 0.97 0.95 3.4 0.8 

Kelso  0.94 0.97 0.95 3.2 1.2 

Killpecker  0.94 0.97 0.95 3.2 0.9 

Little Sahara   0.95 0.97 0.95 2.5 0.2 

White Sands  0.97 0.98 0.97 0.7 0.6 

Redwood 0.99 0.99 0.97 0.2 2.1 

Texas Grassland 0.98 0.98 0.97 0.5 0.8 

Lake Tahoe 0.99 0.99 0.98 0.1 0.9 

Salton Sea 0.99 0.99 0.98 0.1 1.3 
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Table 10. R-based LST validation statistics from six pseudo-invariant sand dune sites using all MOD11 and 

MOD21 LST retrievals during 2005.  

  N MOD11 Bias MOD11 RMSE MOD21 Bias MOD21 RMSE 

Algodones 613 -2.4 2.8 0.5 1.1 

Great Sands   433 --3.7 4.0 0.0 0.7 

Kelso 521 -3.8 4.1 -0.9 1.5 

Killpecker 291 -3.7 3.9 -0.5 0.8 

Little Sahara  398 -3.0 3.2 -0.1 0.5 

White Sands  557 -0.6 1.1 0.3 1.1 

Redwood 682 -0.5 0.9 0.9 1.3 

Texas Grassland 595 -0.9 1.2 0.2 1.0 

Lake Tahoe 415 0.2 0.5 0.7 0.9 

Salton Sea 445 -1.1 1.5 0.2 1.2 
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Figure 30. Figures showing the validation summary for LST retrievals for the MODIS Aqua MYD21 and MYD11 products over various IGBP sites using 

data collected for year 2003-2005, except for Salton Sea (2008-2010).   
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