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History of MOD16 Evapotranspiration 

In the original EOS proposal competition in 1989, Dr. Steve Running proposed 
and was selected as MODIS Science team member responsible for Leaf area index, 
evapotranspiration and photosynthesis/net primary production, then designated as MOD 
15, 16 and 17.  At the ATBD review for at-launch products in 1995, NASA decided to 
give MOD15 LAI/FPAR to Dr. Ranga Myneni to provide a more theoretically based 
algorithm, and Dr. Running was directed to focus on MOD 17 PSN/NPP for the Terra at- 
launch data product.  MOD 16 ET was not dropped, but was deprioritized.  At the EOS 
recompete in 2003 NASA selected another investigator to build a MOD 16 ET product 
but this investigation was not renewed in 2007.  In the interim Dr. Running and the 
NTSG group had changed from an energy balance – surface resistance concept to a 
Penman-Monteith concept, and had greater success building a globally applicable 
algorithm.  Since much of the processing paralleled our MOD 17 product, NTSG tested, 
then generated initial global ET datasets.  In the 2010 renewal competition for the 
MODIS Science Team, Dr. Running reproposed MOD 16, based on the new algorithm 
and global ET datasets now developed, and published in refereed journals.  Now, with 
selection of our 2010 renewal proposal complete, we offer the ATBD.  This document 
represents our formal ATBD for establishing this algorithm and dataset as the official 
MOD 16 Evapotranspiration product. 
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Abstract 

This Algorithm Theoretical Basis Document (ATBD) describes a level 4 MODIS 
land data product, MOD16, the global 8-day (MOD16A2) and annual (MOD16A3) 
terrestrial ecosystem Evapotranspiration (ET) dataset at 1-km spatial resolution over the 
109.03 Million km2 global vegetated land areas.  The MOD16 algorithm is based on the 
logic of the Penman-Monteith equation which uses daily meteorological reanalysis data 
and 8-day remotely sensed vegetation property dynamics from MODIS as inputs. 

The MOD16 ET algorithm runs at daily basis and temporally, daily ET is the sum 
of ET from daytime and night.  Vertically, ET is the sum of water vapor fluxes from soil 
evaporation, wet canopy evaporation and plant transpiration at dry canopy surface.  
MODIS 8-day FPAR is used as vegetation cover faction to quantify how much surface 
net radiation is allocated between soil and vegetation; MODIS 8-day albedo and daily 
surface downward solar radiation and air temperature from daily meteorological 
reanalysis data are used to calculate surface net radiation and soil heat flux; daily air 
temperature, vapor pressure deficit (VPD) and relative humidity data, and 8-day MODIS 
LAI are used to estimate surface stomatal conductance, aerodynamic resistance, wet 
canopy, soil heat flux and other key environmental variables.  MODIS land cover is used 
to specify the biome type for each pixel, and the biome-dependent constant parameters 
for the algorithm are saved in a Biome-Property-Lookup-Table (BPLUT).  Except for 
minimum daily air temperature and VPD, which are directly adopted from the existing 
algorithm of the MODIS global terrestrial gross and net primary production (MODIS 
GPP/NPP), the BPLUT is tuned largely based on a set of targeted annual ET for each 
biome derived from MODIS GPP and water use efficiency calculated from eddy flux 
towers. 

The MOD16 ET has been validated with ET measured at eddy flux towers and ET 
estimated from 232 watersheds.  Averaged over 2000-2010, the total global annual ET 
over the vegetated land surface is 63.4ൈ103 km3, with an average of 569 ± 358 mm yr-1, 
comparable to the recent global estimates.  Similar to other MODIS level 3 or level 4 
MODIS land data products, 8-day and monthly MOD16A2 and annual MOD16A3 
datasets are saved in 10-degree Sinusoidal HDFEOS tiles.  Thanks to the powerful 
internal compression of HDFEOS, for each year, the size of the MOD16A2 and 
MOD16A3 together takes about 39GB.  Since 2006, there have been 193 users from 30 
countries requesting MODIS ET data from us and now MOD16 from 2000 to 2010 are 
ready and have been released to the public for free download at our ftp site, 
ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16/ . 
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Figure Captions 

Figure 1 Seven-year mean percentage of MODIS 8-day Leaf Area Index (LAI) period 
contaminated by unfavorable atmospheric conditions, especially by cloud cover, during growing 
season, defined as annual NPP quality (Zhao et al., 2005).  Similar situation can be applied to 
MODIS LST, making it impractical to use an energy balance model to calculate ET globally. White 
colored area in land is barren or inland water. 

Figure 2 Flowchart of the improved MOD16 ET algorithm.  LAI: leaf area index; FPAR: 
Fraction of Photosynthetically Active Radiation. 

Figure 3 The 8-day composite leaf area index (LAI) in Amazon region for the 8-day period 081 
(March 21–28) in 2001 for (a) the original with no temporal interpolation of the LAI and (b) the 
temporally interpolated LAI. 

Figure 4 Distribution of the 46 AmeriFlux eddy flux towers used for validation of the improved 
ET algorithm. The background is the MOD12Q1 land cover type 2, with the blue color for the 
water body. 

Figure 5 The ET measurements (black dots, OBS), the ET estimates driven by flux tower 
measured meteorological data (red lines) and GMAO meteorological data (blue lines) over 2000-
2006 at seven tower sites, Donaldson (a), LBA Tapajos KM67 Mature Forest  (b), Willow Creek 
(c), Little Prospect Hill (d), Tonzi Ranch (e), Walnut River (f) and Bondville (g). 

Figure 6 Comparisons of the average ET observations to the average daily ET estimates with the 
GMAO parameterized algorithm (a,b) and MERRA GMAO parameterized algorithm (c, d) 
across all the available days at the 46 flux tower sites.  These data were created using (1) tower-
specific meteorology (a, c), (2) global GMAO meteorology (b) and MERRA GMAO 
meteorology (d).  The solid red lines represent that the ratio of ET estimates to ET measurements 
is 1.0 and the solid black lines are the regression of the ET estimates to measurements. 

Figure 7 Global annual MOD16 evapotranspiration (top) over 2000-2006 driven by global 
GMAO (v4.0.0) meteorological data and (bottom) over 2000-2010 driven by global MERRA 
GMAO meteorological data. 

Figure 8 Comparison of the histograms of climatological average of global annual 
evapotranspiration driven by GMAO meteorological data (red solid line) over 2000-2006 and by 
MERRA GMAO meteorological data (solid black line) over 2000-2010.  The GMAO-driven 
global average ET is 568.4 mm/yr and 568.7 mm/yr driven by MERRA GMAO meteorology 
(see text).  These comparisons are only for vegetated land surfaces.  The vegetated land area is 
shown as the colored area in Fig. 7. 

Figure 9 Climatological zonal mean of global annual evapotranspiration by GMAO 
meteorological data over 2000-2006. 

Figure 10 Spatial pattern of the global MOD16 ET seasonality during 2000-2010. 

Figure 11 Spatial pattern of global MODIS ET to PET ratio anomalies during 2000-2009. Large-
scale ET/PET negative anomalies were mainly caused by droughts. 
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Figure 12 (Left) Distribution of the 232 watersheds used for validation of global MOD16 ET 
data. Each watershed is depicted in yellow. (Right) Comparison of annual pseudo ET 
observations (ET OBS, precipitation minus stream flow) from the 232 watersheds and the 
MODIS ET estimates averaged over each watershed over at least five years during 2000-2006.  
The runoff data for the watersheds were provided by Ke Zhang. 

Figure 13 MODIS Sinusoidal “10-degree” tile system.  For land data products, there are 317 
tiles with land pixels, of which 286 tiles with vegetated pixels located between 60˚S to 80˚N. 
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Table Captions 

Table 1 The Biome Properties Look-Up Table (BPLUT) for MODIS ET. ENF: evergreen 
needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: 
deciduous broadleaf forest; MF: mixed forest; WL: woody savannas; SV: savannas; CSH: closed 
shrubland; OSH: open shrubland; Grass: grassland, urban and built-up, barren or sparsely 
vegetated; Crop: cropland. 

Table 1.1 BPLUT using Global Modelling and Assimilation Office (GMAO v. 4.0.0) global 
reanalysis data as input daily meteorological data. 

Table 1.2 BPLUT using Modern Era Retrospective-analysis for Research and Applications of 
Global Modelling and Assimilation Office (MERRA GMAO) as input daily meteorological data. 

Table 2 Other parameter values as used in the improved ET algorithm. 

Table 3  Input non-satellite meteorological data, satellite data, and output ET data. 

Table 4 The University of Maryland (UMD) landcover classification from MODIS land cover 
dataset (MOD12Q1) used in the MOD16 Algorithm.  The data field name is Land_Cover_Type_2 
in the MOD12Q1 data field. 

Table 5 The tower names, abbreviations, latitude (lat), longitude (lon), biome types in the 
parentheses, number of days with valid tower measurements (Days), average daily tower 
evapotranspiration measurements over all the days with valid values (ET_OBS: mm/day). 

Table 6 The tower measured annual GPP, tower measured annual ET summed over all the 
available days divided by the number of years (≤365 days/year), and WUE calculated from 
equation (39) averaged over all the towers for each vegetation type; the annual MODIS GPP 
averaged over each vegetation type; the expected MODIS ET as calculated from equation (40); 
the actual average annual MODIS ET over each vegetation type. ENF: evergreen needleleaf forest; 
EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous broadleaf 
forest; MF: mixed forest; WL: woody savannas; SV: savannas; CSH: closed shrubland; OSH: open 
shrubland; Grass: grassland, urban and built-up, barren or sparsely vegetated; Crop: cropland. N/A 
means that no data is available. 

Table 7 The tower abbreviations, average daily tower evapotranspiration (ET) measurements over 
all the days with valid values (ET_OBS: mm/day); the biases (BIAS: mm/day), mean absolute 
biases (MAE: mm/day), correlation coefficients (R) and Taylor skill scores (S) of ET estimates 
relative to tower ET measurements for the 46 AmeriFlux eddy flux towers.  1: tower-driven results; 
2: GMAO-driven results. 

Table 8. 321 users from 38 countries requesting MODIS ET/PET/LE data over 2006-2012. N: 
number of users. 
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1. Introduction 

All organisms require water for their survival (Oki and Kanae, 2006).  Unlike most other 
natural resources, water circulates and forms closed hydrological cycles.  The terrestrial water 
cycle is of critical importance to a wide array of Earth system processes.  It plays a central role in 
climate and meteorology, plant community dynamics, and carbon and nutrient biogeochemistry 
(Vörösmarty et al., 1998).  Demand for the world’s increasingly scarce water supply is rising 
rapidly, challenging its availability for food production and putting global food security at risk.  
Agriculture, upon which a burgeoning population depends for food, is competing with industrial, 
household, and environmental uses for this scarce water supply (Vörösmarty et al 2010; Rosegrant 
et al., 2003).  The water withdrawals from the renewable freshwater resources include blue water 
from the surface and groundwater as water resources, and green water from the beneficial 
evapotranspiration (ET) as a loss from the precipitated water over non-irrigated croplands (Oki 
and Kanae, 2006).  Global climate change will affect precipitation and ET, and hence influence 
the renewable freshwater resources.  ET is the second largest component (after precipitation) of 
the terrestrial water cycle at the global scale, since ET returns more than 60% of precipitation on 
land back to the atmosphere (Korzoun et al., 1978; L'vovich and White, 1990) and thereby conveys 
an important constraint on water availability at the land surface.  In addition, ET is an important 
energy flux since land ET uses up more than half of the total solar energy absorbed by land surfaces 
(Trenberth et al., 2009).  Accurate estimation of ET not only meets the growing competition for 
the limited water supplies and the need to reduce the cost of the irrigation projects, but also it is 
essential to projecting potential changes in the global hydrological cycle under different climate 
change scenarios (Teuling et al. 2009). 

This is the Algorithm Theoretical Basis Document (ATBD) of a global MODIS land data 
product, MODIS ET dataset, which is a NASA-planned Earth Observing System (EOS) dataset, 
named MOD16 in the MODIS datasets.  The global MOD16 ET includes evaporation from wet 
and moist soil, evaporation from rain water intercepted by the canopy before it reaches the ground, 
and the transpiration through stomata on plant leaves and stems.  The MOD16A2/A3 ET products 
are produced at the 8-day, monthly and annual intervals.  The objectives of this ATBD are: (1) to 
give a review of the current methods for remotely sensed ET estimates, (2) to describe MODIS ET 
algorithm, whose logic follows the Penman-Monteith equation, (3) to introduce the required input 
datasets, daily meteorological reanalysis dataset and 8-day composite MODIS albedo and MODIS 
vegetation dynamics datasets (FPAR/LAI), (4) to detail how parameters are calibrated based on 
measurements from eddy flux towers and a mature MODIS global GPP dataset, (5) to show the 
validation results at eddy flux towers and global watersheds and global MODIS 1-km ET from 
2000 to 2010, (6) to detail MOD16 variables, data file format, map projection, file name, and size, 
and finally (7) to summarize the ATBD. 

2. Background 

Remote sensing has long been recognized as the most feasible means to provide spatially 
distributed regional ET information on land surfaces.  Remotely sensed data, especially those 
from polar-orbiting satellites, provide temporally and spatially continuous information over 
vegetated surfaces useful for regional measurement and monitoring of surface biophysical 
variables affecting ET, including albedo, biome type and leaf area index (LAI) (Los et al., 2000).  
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The MODerate Resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Terra and 
Aqua satellites, provide unprecedented global information on vegetation dynamics and surface 
energy variations (Justice et al., 2002), which can be used for regional and global scale ET 
estimation in near real-time.  Three major types of methods have been developed to estimate ET 
from remote sensing data: (1) empirical/statistical methods which upscale point measured or 
estimated ET to large scales with remotely sensed vegetation indices (Nagler et al. 2005; Glenn 
et al. 2008a, 2008b; Jung et al., 2010); (2) physical models that calculate ET as the residual of 
surface energy balance (SEB) through remotely sensed thermal infrared data (Bastiaanssen et al., 
1998a, 1998b; Su et al., 2002; Overgaard et al., 2006; Bastiaanssen et al. 2005; Allen et al. 2007; 
Kustas and Anderson 2009); (3) and other physical models such as using the Penman-Monteith 
logic (Monteith 1965) to calculate ET (Cleugh et al. 2007; Mu et al. 2007, 2009, 2011).   

2.1 Energy Partitioning Logic 

Energy partitioning at the surface of the earth is governed by the following three coupled 
equations: 

ܪ ൌ ௉ܥߩ
௦ܶ െ ௔ܶ

௔ݎ
																																																																																																																		ሺ1ሻ 

ܧߣ ൌ
௣ܥߩ
ߛ
݁௦௔௧ െ ݁
௔ݎ ൅ ௦ݎ

																																																																																																													ሺ2ሻ 

′ܣ ൌ ܴ௡௘௧ െ ∆ܵ െ ܩ ൌ ܪ ൅  ሺ3ሻ																																																																																												ܧߣ

where ܧߣ ,ܪ and ܣ′ are the fluxes of sensible heat, latent heat and available energy for ܪ and 
 is the latent heat of ߣ  .is soil heat flux; ∆ܵ is the heat storage flux ܩ ,is net radiation ݐܴ݁݊ ;ܧߣ
vaporization.  ߩ is air density, and ܲܥ is the specific heat capacity of air; ܶݏ,	ܶܽ are the 
aerodynamic surface and air temperatures; ܽݎ is the aerodynamic resistance; ݁௦௔௧, ݁ are the water 
vapour pressure at the evaporating surface and in the air; ݎ௦ is the surface resistance to 
evapotranspiration, which is an effective resistance to evaporation from land surface and 
transpiration from the plant canopy.  The psychrometric constant ߛ is given by 

ߛ ൌ ௣ܥ ൈ ௔ܲ ൈ ௔ܯ ሺߣ ൈ ⁄௪ሻܯ 																																																																																									ሺ4ሻ 

where ܯ௔ and ܯ௪ are the molecular masses of dry air and wet air and ௔ܲ is atmospheric 
pressure. 

2.2 Surface Energy Balance Models 

Because remote sensing can provide LST information through thermal spectral bands, 
SEB- based models were proposed and widely being used.  In the early stage of energy-balance-
based models, most studies used the high resolution remote sensing data, some data sources are 
even from airborne sensors or sensor mounted above a site (e.g., Norman et al., 1995; 
Bastiaanssen et al., 1998a, 1998b).  The energy balance models calculate the ET through the 
residual of the surface absorbed energy as ܧߣ ൌ ܴ௡௘௧ െ ∆ܵ െ ܩ െ  .ܪ
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Despite surface aerodynamic temperature is different from remotely sensed LST, the 
surface energy balance method (SEB) calculates the flux of sensible heat from Equation 
Error! Reference source not found. by substituting the remotely-sensed radiative surface 
temperature (LST) for sT , using the measured air temperature (Ta) and calculating the 

aerodynamic resistance ( aR ) from: 

௔ݎ ൌ
1
݇ଶܷ

൤݈݊ ൬
ݖ െ ݀
଴ுݖ

൰ െ ߰ு ൬
ݖ െ ݀
ܮ

൰൨ ൤݈݊ ൬
ݖ െ ݀
଴ݖ

൰ െ ߰ெ ൬
ݖ െ ݀
ܮ

൰൨																					ሺ5ሻ 

In this equation, ݇ is von Karman’s constant (0.4); ܷ is wind speed at the reference height ݖ; ݀ is 
the zero-plane displacement height; ݖ଴, ݖ଴ு are the roughness lengths for momentum and 
sensible heat, respectively; and ߰ு, ߰ெ are the stability correction functions for momentum and 
heat which depend on the Monin-Obukhov length ܮ (Kaimal and Finnigan, 1994). ܧߣ is then 
calculated as the residual of the energy balance using Equation Error! Reference source not found.. 

2.3 Models Using Relationship between Vegetation Index and LST 

Another family of method using LST to estimate ET is based on the relationship between 
vegetation index (VI) and LST.  Nemani and Running (1989) showed the utility of a scatterplot of 
VI-LST on a group of pixels inside a fixed square region in a satellite image.  The air temperature, 
soil and vegetation surface temperature required for ET estimates are obtained through the VI-LST 
triangle plot for an image window (Nishida 2003a, 2003b).  However, Hope et al. (2005) found 
that the relationship between thermal-IR based LST and NDVI at high-latitudes is opposite to that 
of mid-latitude regions because arctic tundra ecosystems characterized by permafrost provide a 
large sink for energy below the ground surface.  And the algorithm is too complex and some key 
biophysical parameters are hard to be parameterized at the global scale.  More importantly, the 
method requires LST and this constrains its application at global scale as detailed below. 
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Figure 1 Seven-year mean percentage of MODIS 8-day Leaf Area Index (LAI) period contaminated by 
unfavorable atmospheric conditions, especially by cloud cover, during growing season, defined as annual 
NPP quality (Zhao et al., 2005).  Similar situation can be applied to MODIS LST, making it impractical to 
use an energy balance model to calculate ET globally. White colored area in land is barren or inland water. 

Both energy-balance-based and VI-LST triangle methods require reliable remotely sensed 
LST, which makes them impractical to be applied at the global scale.  Though we have so far most 
advanced MODIS sensor and standard 8-day MODIS LST at 1-km resolution, two major reasons 
restrain the application of energy balance based models at the global scale.  First, MODIS LST is 
the average of cloud-free LST (Wan et al., 2002), and thus an 8-day composite daytime LST may 
be overestimated at the average overpass time due to exclusion of cloudy days.  In regions with 
high frequency of cloudiness, it is almost impossible to get temporally continuous LST.  Figure 1 
shows the percentage of missed 8-day MODIS LAI during the  growing season due to cloudiness 
(Zhao et al. 2005), which clearly shows that the frequency of cloud cover at an 8-day interval is 
considerably high, especially for areas with rain forests and maritime climate.  Globally, for 
vegetated land, the mean percentage of missing 8-day MODIS data due to unfavorable atmospheric 
conditions is 44.61(±23.65)%, with 38.43% vegetated areas having more than 50% missing 8-days 
in a growing season (Fig. 1).   

Unlike surface contaminated albedo or LAI, which is generally a slow surface variable and 
can be simply temporally filled with data in adjacent clear sky periods, contaminated LST cannot 
be simply filled because it is largely influenced by synoptic weather conditions and has large 
variations.  A regional ET estimate using NOAA/AVHRR data over most parts of the central USA 
has clearly demonstrated that the energy balance model cannot work for areas with cloud cover 
(Fig. 4 in Mecikalski et al., 1999).  Secondly, these LST-required ET algorithms have uncertainties 
largely due to uncertainties in LST.  Zhan et al. (1996) assessed four energy-balance-based ET 
models and found only one with estimates close to the measured, and models are sensitive to T  
and other surface parameters.  Similarly, Cleugh et al. (2007) compared a surface energy balance 
model with the Penman-Monteith (hereafter P-M) method (Monteith, 1965), and found that the 
energy balance model failed because of its sensitivity to small errors in LST.  Because of these 
problems, energy balance models are impractical for application at the global scale in an 
operational manner.  However  they often work well within a narrow range of surface conditions 
for which they were developed and calibrated (e g., Wood et al., 2003; French et al., 2005; 
Bastiaanssen et al., 2005; Courault et al., 2005; Tasumi et al., 2005; McCabe and Wood, 2006).  
Courault et al. (2005), Su (2005), and Glenn et al. (2008a) have given excellent reviews of these 
LST based ET model. 

2.4 Penman-Monteith Logic 

Another fundamentally different approach to developing a satellite-based 
evapotranspiration algorithm is the well-known Penman-Monteith (hereafter P-M) equation.  
Monteith (1965) eliminated surface temperature from Equations (1) – (3) to give:  

ܧߣ ൌ
ݏ ൈ ൅′ܣ ߩ ൈ ௣ܥ ൈ ሺ݁௦௔௧ െ ݁ሻ ⁄௔ݎ

ݏ ൅ ߛ ൈ ሺ1 ൅ ௦ݎ ⁄௔ݎ ሻ
ൌ
ݏ ൈ ൅′ܣ ߩ ൈ ௣ܥ ൈ ܦܸܲ ⁄௔ݎ

ݏ ൅ ߛ ൈ ሺ1 ൅ ௦ݎ ⁄௔ݎ ሻ
											ሺ6ሻ 
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where ݏ ൌ ݀ሺ݁௦௔௧ሻ ݀ܶ⁄ , the slope of the curve relating saturated water vapor pressure (݁௦௔௧) to 
temperature; ܣ′ is available energy partitioned between sensible heat and latent heat fluxes on land 
surface.  ܸܲܦ ൌ ݁௦௔௧ െ ݁ is the air vapor pressure deficit.  All inputs have been previously defined 
except for surface resistance rs, which is an effective resistance accounting for evaporation from 
the soil surface and transpiration from the plant canopy. The aerodynamic resistance, ra, can be 
estimated from Equation (5) using z0V (the roughness length for water vapor) in place of z0H 
although in practice the two are usually assumed to be equal. 

Over extensive, moist surfaces when rs approaches zero, or when		ݎ௦ ≪  ௔, Equation (6)ݎ
reduces to the equilibrium evapotranspiration rate: 

௘௤ܧߣ ൌ
ݏ ൈ ′ܣ

ݏ ൅ ߛ
																																																																																																								ሺ7ሻ 

which is limited only by available energy. Raupach (2001) demonstrates why (7) is the 
theoretical upper limit for regional evapotranspiration from land surfaces where moisture 
availability is not constrained.  Conversely when		ݎ௔ ≪  ௦, evapotranspiration is largelyݎ
controlled by the surface resistance and Equation (6) then reduces to: 

ோௌܧߣ ൌ
ߩ ൈ ௣ܥ ൈ ܦܸܲ

ߛ ൈ ௦ݎ
																																																																																						ሺ8ሻ 

The full P-M equation provides a more robust approach to estimating land surface ET because: 1) 
it combines the main drivers of ET in a theoretically sound way; 2) it provides an energy constraint 
on the ET rate; 3) modeled ET fluxes are not overly sensitive to any of the inputs, i.e. 
differentiation of E shows that (independent) changes in any of the input terms on the right-hand 
side of Equation 6 yield a conservative change in predicted E (Thom, 1975 provides a more 
extensive discussion about the sensitivity of the P-M equation to its inputs); and 4) it has been 
successfully used to both diagnose and predict land surface ET. 

Despite its theoretical appeal, the routine implementation of the P-M equation is often 
hindered by requiring meteorological forcing data (A', Ta and VPD) and the aerodynamic and 
surface resistances (ra and rs).  Radiation and soil heat flux measurements are needed to 
determine ܣ′; air temperature and humidity to calculate VPD; and wind speed and surface 
roughness parameters to determine ra.  These problems are not unique to the P-M equation, since 
A’, Ta and ra are also required by all of the approaches using radiative surface temperature and 
the surface energy balance to calculate	ܧߣ, including the resistance-surface energy balance 
model. 

Multi-temporal implementation of the P-M model at regional scales requires routine 
surface meteorological observations of air temperature, humidity, solar radiation and wind speed.  
Determining the surface resistance, rs, is difficult.  For a fully closed canopy, where LAI > 3, the 
surface resistance is the parallel sum of the leaf stomatal resistances, i.e. rୱ ൌ rୱ୲തതത/LAI , where ݎ௦௧തതത 
is the mean stomatal resistance (e.g. Monteith, 1980) which can be measured directly using 
porometry.  Models for estimating maximum stomatal conductance exist (Kelliher et al., 1995) 
but including the effect of limited soil water availability and stomatal physiology requires either 
a fully coupled biophysical model such as that by Tuzet et al. (2003) or resorting to the empirical 
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discount functions of Jarvis (1976), which must be calibrated: neither of these are appropriate for 
land surface evapotranspiration model that is to be implemented routinely across the globe at 
kilometre spatial resolution. Determining a surface resistance for partial canopy cover is even 
more challenging with various dual source models proposed (e.g. Shuttleworth and Wallace, 
1985) to account for the presence of plants and soil.  Given the impediment that rs presents to 
using the P-M equation, Cleugh et al. (2007) developed a remotely sensed ET model using a P-M 
approach driven by MODIS derived vegetation data and daily surface meteorological inputs 
including incoming solar radiation, surface air temperature and VPD.  Stability corrections to ra 
(Equation 5) was neglected, although this is justifiable because the P-M equation is relatively 
insensitive to aerodynamic resistance - especially when ra << rs and at daily timescales.  Surface 
albedo and emissivities of the surface and atmosphere needed to determine ܣ′, and the 
aerodynamic roughness needed for ra, can be derived from remotely sensed radiance data or 
from models. 

Cleugh et al. (2007) used the more theoretically based P-M equation 6 (1965) to estimate 
ET over Australia with MODIS data.  Based on Cleugh et al.’s model (2007), Mu et al. (2007) 
developed a remotely sensed ET model (RS-ET) to get the first remotely sensed global terrestrial 
ET map, suggesting it is applicable to operationally estimate global ET in near real time at satellite 
sensor resolution.  Based on Mu et al.’s 2007 RS-ET model, Zhang et al. (2009) developed a model 
to estimate ET using remotely sensed NDVI data; Yuan et al. (2010) modified Mu et al.’s 2007 
RS-ET model by adding the constraint of air temperature to stomatal conductance and calculating 
the vegetation cover fraction using LAI instead of EVI. 

There are also other methods using remote sensing data to estimate global ET.  For 
example, Fisher et al. (2008) used Priestley-Taylor (1972) method to estimate global ET using 
AVHRR data; Jung et al. (2010) used a machine-learning method to upscale the point 
FLUXNET tower data to calculate the global ET with remotely sensed data. 

In Mu et al.’s RS-ET algorithm (2007), ET was calculated as the sum of the evaporation 
from moist soil and the transpiration from the vegetation during daytime.  Nighttime ET was 
assumed to be small and negligible.  Soil heat flux (G) was assumed to be zero.  For daily 
calculations, G might be ignored (Gavilána et al., 2007).  G is a relatively small component of 
the surface energy budget relative to sensible and latent energy fluxes for most forest and 
grassland biomes (Ogée et al., 2001; da Rocha et al., 2004; Tanaka et al., 2008) and is generally 
less than 20% of net incoming radiation for the forest and grassland sites from this investigation 
(e.g. Weber et al. 2002; Granger, http://www.taiga.net/wolfcreek/Proceedings_04.pdf).  
However, the assumption of negligible G in RS-ET algorithm is a significant concern for tundra.  
In the Arctic-Boreal regions, G can be a substantial amount of net radiation, especially early in 
the growing season.  The assumption of a negligible G may be valid in mid-latitude regions on a 
daily basis, however in these areas a substantial portion of net radiation melts ice in the active 
layer, especially early in the growing season (Harazono et al., 1995; Engstrom et al., 2006).  The 
RS-ET algorithm neglected the evaporation from the intercepted precipitation from plant canopy.  
After the event of precipitation, part of the vegetation and soil surface is covered by water.  The 
evaporation from the saturated soil surface is much higher than the evaporation from the 
unsaturated soil surface, and the evaporation from the intercepted water by canopy is different 
from canopy transpiration.  Mu et al. (2011) have improved the 2007 algorithm by 1) simplifying 
the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and 
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nighttime components; 3) calculating soil heat flux; 4) improving the methods to estimate 
stomatal conductance, aerodynamic resistance and boundary layer resistance; 5) separating dry 
canopy surface from the wet, and hence canopy water loss includes evaporation from the wet 
canopy surface and transpiration from the dry surface; and 6) dividing soil surface into saturated 
wet surface and moisture surface, and thus soil evaporation includes potential evaporation from 
the saturated wet surface and actual evaporation from the moisture surface.  This improved ET 
algorithm is the official MOD16 ET algorithm used to produce the official global terrestrial 
MOD16 ET product. 

3. MOD16 ET Algorithm Descriptions 

MOD16 ET algorithm is based on the Penman-Monteith equation (Monteith, 1965) as in 
equation 6.  Figure 2 shows the logic behind the improved MOD16 ET Algorithm for calculating 
daily MOD16 ET algorithm. 

 

Figure 2 Flowchart of the improved MOD16 ET algorithm.  LAI: leaf area index; FPAR: Fraction of 
Photosynthetically Active Radiation. 

3.1 Vegetation Cover Fraction 

Net radiation is partitioned between the canopy and soil surface based on vegetation cover 
fraction (ܨ஼).  In the 2007 MOD16 ET algorithm, ܨ஼ was calculated as in equation 9 (Mu et al., 
2007), 
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஼ܨ ൌ
ܫܸܧ െ ௠௜௡ܫܸܧ

௠௔௫ܫܸܧ െ ௠௜௡ܫܸܧ
																																																																												ሺ9ሻ 

where EVImin and EVImax were the minimum and maximum EVI during the study period, set as 
constants of 0.95 and 0.05 (Mu et al., 2007), respectively.  In the improved algorithm (Mu et al., 
2011), to reduce numbers of inputs from MODIS datasets and to simplify the algorithm, we use 8-
day 1-km2 MOD15A2 FPAR (the Fraction of Absorbed Photosynthetically Active Radiation) as a 
surrogate of vegetation cover fraction (Los et al., 2000), 

஼ܨ ൌ  ሺ10ሻ																																																																																																				ܴܣܲܨ

3.2 Daytime and Nighttime ET 

Daily ET should be the sum of daytime and nighttime ET.  To get nighttime average air 
temperature ሺ ௡ܶ௜௚௛௧ሻ , we assume that daily average air temperature ሺ ௔ܶ௩௚ሻ  is the average of 
daytime air temperature ( ௗܶ௔௬) and ௡ܶ௜௚௛௧. 

௡ܶ௜௚௛௧ ൌ 2.0 ൈ ௔ܶ௩௚ െ ௗܶ௔௬																																																																						ሺ11ሻ 

The net incoming solar radiation at night is assumed to be zero.  Based on the optimization theory, 
stomata will close at night to prevent water loss when there is no opportunity for carbon gain 
(Dawson et al., 2007).   In the improved ET algorithm, at night, the stomata are assumed to close 
completely and the plant transpiration through stomata is zero, except for the transpiration through 
leaf boundary-layer and leaf cuticles (more details in section 3.6).  Both nighttime and daytime 
use the same ET algorithm except that different values at daytime and nighttime are used for the 
same variable. 

3.3 Soil Heat Flux 

In MOD16 ET algorithm, the net incoming radiation to the land surface (ܴ௡௘௧) is calculated 
as the equations 12 and 13 (Cleugh et al., 2007). 

ܴ௡௘௧ ൌ ሺ1 െ ሻߙ ൈ ܴ௦↓ ൅ ሺߝ௔ െ ௦ሻߝ ൈ ߪ ൈ ሺ273.15 ൅ ܶሻସ                      (12) 

௔ߝ ൌ 1 െ ൫ି଻.଻଻ൈଵ଴݌ݔ0.26݁
షరൈ்మ൯ 

௦ߝ ൌ 0.97 

where ߙ is MODIS albedo, ܴ௦↓ is the downward shortwave radiation, ߝ௦ is surface emissivity,  ߝ௔ 
is atmospheric emissivity, and ܶ is air temperature in °C.  At daytime, if ܴ௡௘௧ is less than zero, 
ܴ௡௘௧ is set to be zero; at nighttime, if ܴ௡௘௧ is less than -0.5 times of daytime ܴ௡௘௧, nighttime ܴ௡௘௧ 
is set as -0.5 multiplying daytime ܴ௡௘௧.

 
In the improved algorithm, there will be no soil heat flux (ܩ) interaction between the soil 

and atmosphere if the ground is 100% covered with vegetation.  Energy received by soil is the 
difference between the radiation partitioned on the soil surface and soil heat flux (ܩ). 
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ܣ ൌ ܴ௡௘௧ 

஼ܣ ൌ ஼ܨ ൈ  ሺ13ሻ																																																																																																					ܣ

ௌைூ௅ܣ  ൌ ሺ1 െ ஼ሻܨ ൈ ܣ െ  ܩ

where A is available energy partitioned between sensible heat, latent heat and soil heat fluxes on 
land surface; ܴ௡௘௧  is the net incoming radiation received by land surface; AC is the part of A 
allocated to the canopy and ASOIL is the part of A partitioned on the soil surface.  In 1986, Clothier 
et al. (1986) proposed a method to estimate soil heat flux using remote sensing data as  

ௌைூ௅ܩ ൌ ሺ0.295 െ 1ሻܤ/2ܤ0.0133 ൈ  ሺ14ሻ																																																										௜ܣ

where B1 and B2 are the bandpasses of SPOT filters 610-680 nm, and 790-890 nm, Ai is daytime 
or nighttime available energy partitioned between latent heat and sensible heat fluxes.  Kustas and 
Daughtry (1990) further improved the method using B2/B1 and ܰܫܸܦ′. 

ௌைூ௅ܩ ൌ ሺ0.294 െ 1ሻܤ/2ܤ0.0164 ൈ  ሺ15ሻ																																																								௜ܣ

′ܫܸܦܰ ൌ ሺ2ܤ െ 1ሻܤ
ሺ1ܤ ൅ 2ሻ൘ܤ  

ௌைூ௅ܩ ൌ ሺ0.325 െ 0.208 ൈ ሻ′ܫܸܦܰ ൈ  ሺ16ሻ																																																							௜ܣ

Daughtry et al. (1990) compared the soil heat flux using different methods with observed 
data and found that the estimates using ܰܫܸܦ′ in equation 16 had the lowest absolute error (13%) 
with a small positive bias.  Jacobsen and Hansen (1999) proposed some other methods to estimate 
Gsoil as,   

ௌைூ௅ܩ ൌ 4.73 ൈ ௜ܶ െ 20.87																																																																																	ሺ17ሻ 

ௌைூ௅ܩ ൌ ሺെ0.27 ൈ ܫܸܦܰ ൅ 0.39ሻ ൈ  ሺ18ሻ																																																												௜ܣ

ௌைூ௅ܩ ൌ ሺെ0.025 ൈ ܴேூோ ܴோா஽⁄ ൅ 0.35ሻ ൈ  ሺ19ሻ																																																௜ܣ

where Ti means daytime or nighttime average temperature in °C. 

We adopted equations (17) and (18) globally with some constraints.  At the extremely hot 
or cold places or when the difference between daytime and nighttime temperature is low (<5°C), 
there is no soil heat flux.  The soil heat flux is set to be zero in the 2007 version, now it is estimated 
as 

݈݅݋ݏܩ ൌ ቐ
4.73 ൈ ௜ܶ െ 20.87																	 ୫ܶ୧୬_௖௟௢௦௘ ൑ ܶܽ݊݊௔௩௚ ൏ 25Ԩ, ݕܽ݀ܶ െ ݐ݄݃݅݊ܶ ൒ 5Ԩ
0.0															ܶܽ݊݊௔௩௚ ൒ 25Ԩ	ݎ݋			ܶܽ݊݊௔௩௚ ൏ ୫ܶ୧୬_௖௟௢௦௘	ݎ݋	ݕܽ݀ܶ െ ݐ݄݃݅݊ܶ ൏ 5Ԩ	
0.39 ∗ ሻ݈݅݋ݏܩሺݏܾܽ																																																																														௜ܣ ൐ 0.39 ∗ ௜ሻܣሺݏܾܽ

	 

ܩ ൌ ݈݅݋ݏܩ ൈ ሺ1 െ  (ሺ20																																																																																																					஼ሻܨ
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in the improved algorithm, where ݈݅݋ݏܩ stands for the soil heat flux when ܨ஼ ൌ 0; ܶܽ݊݊௔௩௚ is 
annual average daily temperature, and ୫ܶ୧୬_௖௟௢௦௘ is the threshold value below which the stomata 
will close completely and halt plant transpiration (Table 1; Running et al., 2004; Mu et al., 2007b; 
Mu et al., 2011).  At daytime, ݈݅݋ݏܩௗ௔௬ ൌ 0.0  if ܣௗ௔௬ െ ௗ௔௬݈݅݋ݏܩ ൏ 0.0 ; at nighttime, 
௡௜௚௛௧݈݅݋ݏܩ ൌ ௡௜௚௛௧ܣ ൅ 0.5 ൈ ௗ௔௬ܣ ௗ௔௬ ifܣ ൐ 0.0 and ܣ௡௜௚௛௧ െ ௡௜௚௛௧ܩ ൏ െ0.5 ∗  .ௗ௔௬ܣ

Table 1 The Biome Properties Look-Up Table (BPLUT) for MODIS ET. ENF: evergreen 
needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: 
deciduous broadleaf forest; MF: mixed forest; WL: woody savannas; SV: savannas; CSH: closed 
shrubland; OSH: open shrubland; Grass: grassland, urban and built-up, barren or sparsely 
vegetated; Crop: cropland. 

Table 1.1 BPLUT using Global Modelling and Assimilation Office (GMAO v. 4.0.0) global 
reanalysis data as input daily meteorological data. 

PARAMETER ENF EBF DNF DBF MF CSH 
Tmin_open (°C) 8.31 9.09 10.44 9.94 9.50 8.61 
Tmin_close (°C) -8.00 -8.00 -8.00 -6.00 -7.00 -8.00 
VPDclose (Pa) 3000 4000 3500 2900 2900 4300 
VPDopen (Pa) 650 1000 650 650 650 650 
gl_sh  (m s-1) 0.04 0.01 0.04 0.01 0.04 0.04 
gl_e_wv (m s-1) 0.04 0.01 0.04 0.01 0.04 0.04 
Cl (m/s) 0.0032 0.0025 0.0032 0.0028 0.0025 0.0065 
RBL_MIN (s m-1) 65.0 70.0 65.0 65.0 65.0 20.0 
RBL_MAX (s m-1) 95.0 100.0 95.0 100.0 95.0 55.0 

 
 
PARAMETER OSH WL SV Grass Crop
Tmin_open (°C) 8.80 11.39 11.39 12.02 12.02
Tmin_close (°C) -8.00 -8.00 -8.00 -8.00 -8.00
VPDclose (Pa) 4400 3500 3600 4200 4500
VPDopen (Pa) 650 650 650 650 650
gl_sh  (m s-1) 0.04 0.08 0.08 0.02 0.02
gl_e_wv (m s-1) 0.04 0.08 0.08 0.02 0.02
Cl (m/s) 0.0065 0.0065 0.0065 0.0070 0.0070
RBL_MIN (s m-1) 20.0 25.0 25.0 20.0 20.0
RBL_MAX (s m-1) 55.0 45.0 45.0 50.0 50.0

 
Table 1.2 BPLUT using Modern Era Retrospective-analysis for Research and Applications of 
Global Modelling and Assimilation Office (MERRA GMAO) as input daily meteorological data. 
 
PARAMETER ENF EBF DNF DBF MF CSH 
Tmin_open (°C) 8.31 9.09 10.44 9.94 9.50 8.61 
Tmin_close (°C) -8.00 -8.00 -8.00 -6.00 -7.00 -8.00 
VPDclose (Pa) 3000 4000 3500 2900 2900 4300 
VPDopen (Pa) 650 1000 650 650 650 650 
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gl_sh  (m s-1) 0.04 0.01 0.04 0.01 0.04 0.04 
gl_e_wv (m s-1) 0.04 0.01 0.04 0.01 0.04 0.04 
Cl (m/s) 0.0032 0.0032 0.0032 0.0032 0.0024 0.0065 
RBL_MIN (s m-1) 65.0 65.0 65.0 65.0 65.0 20.0 
RBL_MAX (s m-1) 95.0 95.0 95.0 95.0 95.0 45.0 

 
 
PARAMETER OSH WL SV Grass Crop
Tmin_open (°C) 8.80 11.39 11.39 12.02 12.02
Tmin_close (°C) -8.00 -8.00 -8.00 -8.00 -8.00
VPDclose (Pa) 4400 3500 3600 4200 4500
VPDopen (Pa) 650 650 650 650 650
gl_sh  (m s-1) 0.04 0.08 0.08 0.02 0.02
gl_e_wv (m s-1) 0.04 0.08 0.08 0.02 0.02
Cl (m/s) 0.0065 0.0070 0.0070 0.0075 0.0075
RBL_MIN (s m-1) 20.0 15.0 15.0 15.0 15.0
RBL_MAX (s m-1) 45.0 45.0 45.0 45.0 45.0

3.4 Wet Surface Fraction 

In the 2007 MOD16 ET algorithm, there was no difference between the ET on the saturated 
and moist bare soil surface, and there was no evaporation but transpiration on the canopy surface 
(Figure 1 in Mu et al., 2007).  In the improved ET algorithm (Mu et al., 2011), ET is the sum of 
water lost to the atmosphere from the soil surface through evaporation, canopy evaporation from 
the water intercepted by the canopy, and transpiration from plant tissues (Fig. 2).  The land surface 
is covered by the plant and the bare soil surface, and percentage of the two components is 
determined by ܨ஼.  Both the canopy and the soil surface are partly covered by water under certain 
conditions.  The water cover fraction (ݐ݁ݓܨ) is taken from the Fisher et al. (2008) ET model, 
modified to be constrained to zero when relative humidity (RH) is less than 70%: 

ݐ݁ݓܨ ൌ ቄ ܪܴ																								0.0 ൏ 70%
70%							ସܪܴ ൑ ܪܴ ൑ 100%

																																																							ሺ21ሻ 

where ܴܪ is relative humidity (Fisher et al, 2008).  When ܴܪ is less than 70%, 0% of the surface 
is covered by water.  For the wet canopy and wet soil surface, the water evaporation is calculated 
as the potential evaporation as described in sections 3.5 and 3.7. 

3.5 Evaporation from Wet Canopy Surface 

Evaporation of precipitation intercepted by the canopy accounts for a substantial amount 
of upward water flux in ecosystems with high LAI.  For the improved algorithm, when the 
vegetation is covered with water (i.e., ݐ݁ݓܨ is not zero), water evaporation from the wet canopy 
surface will occur.  ET from the vegetation consists of the evaporation from the wet canopy surface 
and transpiration from plant tissue, whose rates are regulated by aerodynamics resistance and 
surface resistance. 
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The aerodynamic resistance (ܿݎ݄ݎ , s m-1) and wet canopy resistance (ܿݒݎ , s m-1) to 
evaporated water on the wet canopy surface are calculated as 

݄ܿݎ ൌ
1.0

݄ݏ_݈݃ ൈ ܫܣܮ ൈ ݐ݁ݓܨ
 

ܿݎݎ ൌ
ߩ ൈ ௣ܥ

4.0 ൈ ߪ ൈ ሺ ௜ܶ ൅ 273.15ሻଷ
																																																																ሺ22ሻ 

ܿݎ݄ݎ ൌ
݄ܿݎ ൈ ܿݎݎ
݄ܿݎ ൅ ܿݎݎ

 

ܿݒݎ ൌ
1.0

ݒݓ_݁_݈݃ ൈ ܫܣܮ ൈ ݐ݁ݓܨ
 

 
where rhc (s m-1) is the wet canopy resistance to sensible heat, rrc (s m-1) is the resistance to 
radiative heat transfer through air; gl_sh (s m-1) is leaf conductance to sensible heat per unit LAI, 
gl_e_wv (m s-1) is leaf conductance to evaporated water vapor per unit LAI, σ (W m-2 K-4) is 
Stefan-Boltzmann constant.  Following Biome-BGC model (Thornton, 1998) with revision to 
account for wet canopy, the evaporation on wet canopy surface is calculated as 

௪௘௧_஼ܧߣ ൌ
ሺݏ ൈ ஼ܣ ൅ ߩ ൈ ௣ܥ ൈ ሺ݁௦௔௧ െ ݁ሻ ൈ ஼ܨ ⁄ܿݎ݄ݎ ሻ ൈ ݐ݁ݓܨ

ݏ ൅ ௔ܲ ൈ ௣ܥ ൈ ܿݒݎ
ߣ ൈ ߝ ൈ ܿݎ݄ݎ

																			ሺ23ሻ 

where the resistance to latent heat transfer (rvc) is the sum of aerodynamic resistance (rhrc) and 
surface resistance (rs) in equation 6. 

3.6 Plant Transpiration 

3.6.1 Surface Conductance to Transpiration 

Plant transpiration occurs not only during daytime but also at nighttime.  Since most of the 
transpiration occurs at daytime, the nighttime transpiration was neglected in the 2007 algorithm.  
In the improved algorithm, both the daytime and night time transpiration are included for the 
calculation of transpiration.   

For many plant species, stomatal conductance (Cs) decreases as vapor pressure deficit 
(VPD) increases, and stomatal conductance is further limited by both low and high temperatures 
(Jarvis, 1976; Sandford et al., 1986; Kawamitsu et al., 1993; Schulze et al., 1994; Leuning, 1995; 
Marsden et al., 1996; Dang et al., 1997; Oren et al., 1999, 2001; Xu et al., 2003; Misson et al., 
2004).  VPD is calculated as the difference between saturated air vapor pressure, as determined 
from air temperature (Murray, 1967), and actual air vapor pressure.  Because high temperatures 
are often accompanied by high VPDs, we have only added constraints on stomatal conductance 
for VPD and minimum air temperature, ignoring constraints resulting from high temperature.  For 
the daytime plant transpiration, the stomatal conductance estimation has been improved.  In the 
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2007 algorithm, surface conductance (CC) was estimated by using LAI to scale stomatal 
conductance (Cs) from leaf level up to canopy level (Landsberg and Gower, 1997), 

ௌܥ ൌ ௅ܥ ൈ ݉ሺܶ݉݅݊ሻ ൈ ݉ሺܸܲܦሻ 

஼ܥ ൌ ௌܥ ൈ  ሺ24ሻ																																																																																																ܫܣܮ

where CL is the mean potential stomatal conductance per unit leaf area, m(Tmin) is a multiplier that 
limits potential stomatal conductance by minimum air temperatures (Tmin), and m(VPD) is a 
multiplier used to reduce the potential stomatal conductance when VPD (difference between ݁௦௔௧ 
and ݁) is high enough to reduce canopy conductance (Mu et al., 2007; Zhao et al., 2005).  In the 
case of plant transpiration, surface conductance is equivalent to the canopy conductance (CC), and 
hence surface resistance (rs) is the inverse of canopy conductance (CC).  We calculate the 
constraints from minimum air temperature (Tmin) and VPD as: 

݉ሺ ௠ܶ௜௡ሻ ൌ

ە
ۖ
۔

ۖ
																																																																																						1.0ۓ ௠ܶ௜௡ ൒ ୫ܶ୧୬_௢௣௘௡	

௠ܶ௜௡ െ ୫ܶ୧୬_௖௟௢௦௘

୫ܶ୧୬_௢௣௘௡ െ ୫ܶ୧୬_௖௟௢௦௘
																											 ୫ܶ୧୬_௖௟௢௦௘ ൏ ௠ܶ௜௡ ൏ ୫ܶ୧୬_௢௣௘௡

0.0																																																																																					 ௠ܶ௜௡ ൑ ୫ܶ୧୬_௖௟௢௦௘

 

(25) 

݉ሺܸܲܦሻ ൌ

ە
۔

ۓ
ܦܸܲ																																																																																						1.0 ൑ 	௢௣௘௡ܦܸܲ

௖௟௢௦௘ܦܸܲ െ ܦܸܲ
௖௟௢௦௘ܦܸܲ െ ௢௣௘௡ܦܸܲ

௢௣௘௡ܦܸܲ																											 ൏ ܦܸܲ ൏ ୡ୪୭ୱୣܦܸܲ

ܦܸܲ																																																																																					0.0 ൒ ௖௟௢௦௘ܦܸܲ

 

where close indicates nearly complete inhibition (full stomatal closure) due to low Tmin and high 
VPD, and open indicates no inhibition to transpiration  (Table 1).  When Tmin is lower than the 
threshold value Tmin_close, or VPD is higher than the threshold VPDclose, the strong stresses from 
temperature or water availability will cause stomata to close completely, halting plant transpiration.  
On the other hand, when Tmin is higher than Tmin_open, and VPD is lower than VPDopen, there will be 
no temperature or water stress on transpiration.  For Tmin and VPD falling into the range of the 
upper and low limits, the corresponding multiplier will be within 0.0 to 1.0, implying a partial 
stomatal closure.  The multipliers range linearly from 0 (total inhibition, limiting sr ) to 1 (no 

inhibition) for the range of biomes are listed in a Biome Properties Look-Up Table (BPLUT) 
(Table 1) (Mu et al., 2007; 2011).  Complete details on the derivation of the algorithm and the 
values used in the BPLUT can be found in section 5.  The effect of soil water availability is not 
included in the ET algorithm.  Some studies have suggested that atmospheric conditions reflect 
surface parameters (Bouchet, 1963; Morton, 1983), and VPD can be used as an indicator of 
environment water stress (Running et al., 1988; Granger et al., 1989).  In addition, Mu et al. (2007b) 
found that VPD alone can capture interannual variability of the full water stress from both the 
atmosphere and soil for almost all of China and the conterminous U.S., though it may fail to capture 
the full seasonal water stress in dry regions experiencing strong summer monsoons. 
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In the 2007 algorithm, CL was a constant for all biome types.  In the improved algorithm, 
CL is set differently for different biomes as shown in Table 1 (Kelliher et al., 1995; Schulze et al., 
1994; White et al., 2000).  In the improved algorithm, the way to calculate CC has been revised.  
Canopy conductance to transpired water vapor per unit LAI is derived from stomatal and cuticular 
conductances in parallel with each other, and both in series with leaf boundary layer conductance 
(Thornton, 1998; Running & Kimball, 2005). 
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where the subscript i means the variable value at daytime and nighttime; ܩௌ_ௗ௔௬1 and ܩௌ_௡௜௚௛௧1 
are daytime and nighttime stomatal conductance, respectively; CUG is leaf cuticular conductance; 

2SG
 
is leaf boundary-layer conductance; g_cu is cuticular conductance per unit LAI, set as a 

constant value of 0.00001 (m s-1) for all biomes; gl_sh is leaf conductance to sensible heat per 
unit LAI, which is a constant value for each given biome (Table 1).  The reason to use the 
correction function rୡ୭୰୰is that, the conductance through air varies with the air temperature and 
pressure.  The prescribed values are assumed to be given for standard conditions of 20˚C and 
101300Pa.  Based on the prescribed daily air temperature (converted to Kelvins) and an air 
pressure estimated from a prescribed elevation, the prescribed standard conductances are 
converted to actual conductances for the day according to Jones (1992) and Thornton (1998).  rୱ 
is the dry canopy surface resistance to transpiration from the plant.  Instead of setting the 
atmospheric pressure ( ௔ܲ) as a constant value as in the 2007 algorithm, ௔ܲ is calculated as a 
function of the elevation (Elev) (Thornton, 1998).  

ଵݐ ൌ 1.0 െ
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௔ܲ ൌ ௌ்ܲ஽ ൈ  ଵ௧మݐ

where LRSTD, TSTD, GSTD, RR, MA and PSTD are constant values as listed in Table 2.  LRSTD (K m-1) 
is standard temperature lapse rate; TSTD (K) is standard temperature at 0.0 m elevation; GSTD (m s-

2) is standard gravitational acceleration; RR (m3 Pa mol-1 K-1) is gas law constant; MA (kg mol-1) 
is molecular weight of air and PSTD (Pa) is standard pressure at 0.0 m elevation. 

Table 2 Other parameter values as used in the improved ET algorithm 

LRSTD 

(K m-1) 
TSTD 

(K) 
GSTD 

(m s-2) 
RR

(m3 Pa mol-1 K-1)
MA

(kg mol-1)
PSTD 

(Pa) 
0.0065 288.15 9.80665 8.3143 28.9644e-3 101325.0 

Based on the optimization theory, stomata will close at night to prevent water loss when 
there is no opportunity for carbon gain (Dawson et al., 2007).  In the improved ET algorithm, the 
stomata are assumed to close completely at night, resulting in ܩௌ1 ൌ 0.0. 

3.6.2 Aerodynamic Resistance 

The transfer of heat and water vapor from the dry canopy surface into the air above the 
canopy is determined by the aerodynamic resistanceሺݎ௔ሻ, which was a constant of 20 s m-1 in the 
2007 algorithm.  In the improved algorithm, ݎ௔ is calculated as a parallel resistance to convective 
 ,heat transfer following Biome-BGC model (Thornton, 1998) (ݎݎ) and radiative (݄ݎ)

௔ݎ ൌ
݄ݎ ൈ ݎݎ
݄ݎ ൅ ݎݎ

 

݄ݎ ൌ
1.0
݈݃_ܾ݈

																																																							ሺ28ሻ 

ݎݎ ൌ
ߩ ൈ ௣ܥ

4.0 ൈ ߪ ൈ ሺ ௜ܶ ൅ 273.15ሻଷ
 

where gl_bl (m s-1) is leaf-scale boundary layer conductance, whose value is equal to leaf 
conductance to sensible heat per unit LAI (gl_sh (m s-1) as in section 3.5), and σ (W m-2 K-4) is 
Stefan-Boltzmann constant. 

3.6.3 Plant Transpiration 

Finally, the plant transpiration (ܧߣ௧௥௔௡௦ሻ	is calculated as  

௧௥௔௡௦ܧߣ ൌ
ሺݏ ൈ ஼ܣ ൅ ߩ ൈ ௣ܥ ൈ ሺ݁௦௔௧ െ ݁ሻ ൈ ஼ܨ ⁄௔ݎ ሻ ൈ ሺ1 െ ሻݐ݁ݓܨ

ݏ ൅ ߛ ൈ ሺ1 ൅ ௦ݎ ⁄௔ݎ ሻ
												ሺ29ሻ 

where ݎ௔is the aerodynamic resistance calculated from equation 6. 



16 
 

In addition, to monitor environmental water stresses and droughts, we also calculate 
potential surface ET (see section 3.8).  The potential plant transpiration ሺܧߣ௉ை்_௧௥௔௡௦ሻ is calculated 
following the Priestley-Taylor method (1972).   

௉ை்_௧௥௔௡௦ܧߣ ൌ
ߙ ൈ ݏ ൈ ஼ܣ ൈ ሺ1 െ ሻݐ݁ݓܨ

ݏ ൅ ߛ
																																																																ሺ30ሻ 

ߙ ൌ 1.26 

3.7 Evaporation from Soil Surface 

The soil surface is divided into the saturated surface covered with water and the moist 
surface by Fwet.  The soil evaporation includes the potential evaporation from the saturated soil 
surface and evaporation from the moist soil surface.  The total aerodynamic resistance to vapor 
transport (rtot) is the sum of surface resistance (rs) and the aerodynamic resistance for vapor 
transport (rv) such that svtot rrr   (van de Griend, 1994; Mu et al., 2007).  In the 2007 algorithm, 

a constant rtotc (107 s m-1) for rtot was assumed globally based on observations of the soil surface 
in tiger-bush in southwest Niger (Wallace and Holwill, 1997),  but it was corrected (ݎ௖௢௥௥) for 
atmospheric temperature ( ௜ܶ) and pressure ( ௔ܲ) (Jones, 1992) with standard conditions assumed to 
be ௜ܶ ൌ and ௔ܲ ܥ20° ൌ 101300ܲܽ. 
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We assume that rv (s m-1) is equal to the aerodynamic resistance (ra: s m-1) in Equation 6 
since the values of rv and ra are usually very close (van de Griend, 1994).  The aerodynamic 
resistance at the soil surface (ras) is parallel to both the resistance to convective heat transfer (rhs: 
s m-1) and the resistance to radiative heat transfer (rrs: s m-1) (Choudhury and DiGirolamo, 1998), 
such that 

௔௦ݎ ൌ
௛௦ݎ ൈ ௥௦ݎ
௛௦ݎ ൅ ௥௦ݎ

 

௥௦ݎ ൌ
ߩ ൈ ௣ܥ
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																																																																							ሺ32ሻ 

௛௦ݎ ൌ  ௧௢௧ݎ

In the 2007 algorithm, only the soil evaporation from the moist surface was calculated.  To 
examine the sensitivity of actual soil evaporation to rtot in the 2007 MOD16 ET algorithm, we used 
different values for rtotc.  The observed latent heat flux (LE) average over the 19 AmeriFlux towers 
used to validate the 2007 MOD16 algorithm was 66.9 W/m2, while the average LE estimate was 
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61.0 W/m2 driven by tower meteorological data and 65.6 W/m2 driven by NASA’s Global 
Modeling and Assimilation Office (GMAO, v. 4.0.0) data.  When rtotc is 10 s m-1, much lower than 
107 s m-1, soil evaporation is much higher, and hence LE is much higher, with the average tower-
driven LE of 86.0 W/m2 and GMAO-driven LE of 98.7 W/m2.  However, when rtotc ranges between 
50 s m-1 and 1000 s m-1, there is little difference in the soil evaporation results, and there is, 
therefore, little change in LE (tower-driven LE average of 54.4~64.6 W/m2 and GMAO-driven LE 
average of 58.9~70.0 W/m2).  The value of 50 s m-1 was chosen in the 2007 algorithm as the lower 
bound because it is very close to the mean boundary layer resistance for vegetation under semiarid 
conditions, and there is little variation around this mean (van de Griend, 1994).  In the improved 
MOD16 ET algorithm, the rhs is assumed to be equal to boundary layer resistance, which is 
calculated in the same way as total aerodynamic resistance (rtot) in Equation 31 (Thornton, 1998) 
only that, in the improved algorithm, rtotc is not a constant.  For a given biome type, there is a 
maximum (rblmax) and a minimum value (rblmin) for rtotc, and  rtotc is a function of VPD. 
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The values of rblmax and rblmin, VPDopen (when there is no water stress on transpiration) and 
VPDclose (when water stress causes stomata to close almost completely, halting plant transpiration) 
are parameterized differently for different biomes and are listed in Table 1. 

The actual soil evaporation ( SOILE ) is calculated in equation 34 using potential soil 

evaporation ( POTSOILE _ ) and soil moisture constraint function in the Fisher et al. (2008) ET 

model.  This function is based on the complementary hypothesis (Bouchet, 1963), which defines 
land-atmosphere interactions from air VPD and relative humidity (RH, %). 
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where β was set as 100 in the 2007 algorithm, and is revised as 200 in the improved algorithm. 

3.8 Total Daily Evapotranspiration 

In the improved algorithm, the total daily ET is the sum of evaporation from the wet canopy 
surface, the transpiration from the dry canopy surface and the evaporation from the soil surface.  
The total daily ET and potential ETሺܧߣ௉ை்ሻ are calculated as in equation 35.   
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ܧߣ ൌ ௪௘௧_஼ܧߣ ൅ ௧௥௔௡௦ܧߣ ൅  ሺ35ሻ																																																																	ௌைூ௅ܧߣ
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Combination of ET with the potential ET can determine environmental water stress and detect the 
intensity of drought.  

4. Input Datasets 

The MOD16 uses daily meteorological data and 8-day MODIS datasets as input for daily 
ET calculations.  The input global daily meteorological dataset is from MERRA GMAO at about 
0.5°  0.6° resolution (http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl).  For the MOD16 ET 
data product, the input MODIS datasets include 1) global 1-km2 Collection 4 MODIS land cover 
type 2 (MOD12Q1) (Friedl et al., 2002), 2) global 1-km2 MODIS Collection 5 FPAR/LAI 
(MOD15A2) (Myneni et al., 2002), and 3) Collection 5 global 1-km2 albedo quality control and 
albedo data (the 10th band of the White-Sky-Albedo from MCD43B2/MCD43B3) (Schaaf et al., 
2002; Jin et al., 2003; Salomon et al., 2006).  Different from users’ expectation, the Collection 5 
MODIS FPAR/LAI is being generated with a frozen version of the Colleciton 4 instead of the 
Colleciton 5 MOD12Q1 land cover as an input by MODIS Adaptive Processing System 
(MODAPS) at NASA. 

Table 3 Input non-satellite meteorological data, satellite data, and output ET data. 

Variable 
Names 

Sensors Time Spans Resolution Coverage Output 
Format Spatial Temporal 

Input Non-Satellite Data (daily meteorological data) 
GMAO  2000-2006 1.00°x1.25° daily global  
MERRA 
GMAO 

 2000-present 0.5°x0.6° daily global  

Input Remote Sensing Data 
Albedo MODIS (MOD43C) 2000-2006 0.05° 16-day global  HDFEOS/ 

GEOTIFF MODIS (MCD43B) 2000-present 1km 8-day 
VIIRS 2012-->  

Land 
Cover 

MODIS  1km global HDFEOS/  
GEOTIFF VIIRS   

LAI MODIS 2000-present 1km global HDFEOS/ 
GEOTIFF VIIRS 2012-->  

FPAR MODIS 2000-present 1km global HDFEOS/ 
GEOTIFF VIIRS 2012-->  

Output MOD16 ET products 
ET, LE, 
PET, 
PLE, QC 

MODIS 2000-present 1km 8-day,  
monthly, 
annual 

global HDFEOS 

VIIRS 2012-->  

Table 3 lists the input and output datasets of the MOD16 ET algorithm.  In Mu et al.’s 2011 
MOD16 ET algorithm improvement paper, we used the GMAO (v4.0.0) global meteorological 
data at 1.00°  1.25° resolution and Collection 4 0.05-degree CMG MODIS albedo (the 10th band 
of the White-Sky-Albedo from MOD43C1) to do the parameter calibrations and algorithm 
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validations over Jan. 2000-Dec. 2006.  In this ATBD, we have two sets of Biome Properties Look-
Up Table (BPLUT) as shown in Table 1. 

4.1. Daily Meteorological Data 

The MOD16 algorithm computes ET at a daily time step.  This is made possible by the 
daily meteorological data, including average and minimum air temperature, incident PAR and 
specific humidity, provided by NASA’s Global Modeling and Assimilation Office (GMAO or 
MERRA GMAO), a branch of NASA (Schubert et al. 1993).  These data, produced every six 
hours, are derived using a global circulation model (GCM), which incorporates both ground and 
satellite-based observations.  These data are distributed at a resolution of 0.5° x 0.6° (MERRA 
GMAO) or 1.00° x 1.25° (GMAO, v4.0.0) in contrast to the 1-km gridded MOD16 outputs.  It is 
assumed that the coarse resolution meteorological data provide an accurate depiction of ground 
conditions and are homogeneous within the spatial extent of each cell. 

Spatially interpolating GMAO reanalysis data 

The resolution for GMAO (1.00°  1.25° ) or MERRA GMAO (0.5° x 0.6° ) 
meteorological data is too coarse for a 1-km2 MODIS pixel.  Zhao et al. (2005) found that, in the 
Collection 4 MODIS GPP/NPP algorithm (MOD17), each 1-km2 pixel falling into the same 1.00° 
 1.25° GMAO grid cell inherited the same meteorological data, creating a noticeable GMAO 
footprint (Fig. 1a,c in Zhao et al., 2005).  Such treatment may be acceptable on a global or regional 
scale, but it can lead to large inaccuracies at the local scale, especially for terrain with 
topographical variation or located in regions with steep climatic gradients.  To enhance the 
meteorological inputs, Zhao et al. (2005) have non-linearly interpolated the coarse resolution 
GMAO data to the 1-km2 MODIS pixel level based on the four GMAO cells surrounding a given 
pixel.  Theoretically, this GMAO spatial interpolation improves the accuracy of meteorological 
data for each 1-km2 pixel because it removes the abrupt changes from one side of a GMAO 
boundary to the other.  In addition, for most World Meteorological Organization (WMO) stations, 
spatial interpolation reduced the root mean square error (RMSE) and increased the correlation 
between the GMAO data and the observed WMO daily weather data for 2000–2003, suggesting 
that the non-linear spatial interpolation considerably improves GMAO inputs.  These interpolated 
GMAO data are, therefore, used in our calculations of ET. 

4.2. Dependence on MODIS Land Cover Classification (MOD12Q1) 

One of the first MODIS products used in the MOD16 algorithm is the Land Cover 
Product, MOD12Q1.  The importance of this product cannot be overstated as the MOD16 
algorithm relies heavily on land cover type through use of the BPLUT (Table 1).  While, the 
primary product created by MOD12 is a 17-class IGBP (International Geosphere-Biosphere 
Programme) landcover classification map (Belward et al. 1999; Scepan 1999), the MOD16 
algorithm employs University of Maryland (UMD) landcover classification scheme (Table 4).  
More details on these and other schemes and their quality control considerations can be found at 
the Land Cover Product Team website 
(http://geography.bu.edu/landcover/userguidelc/index.html).  Given the global nature and daily 
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time-step of the MODIS project, a broad classification scheme, which retains the essence of land 
cover, is necessary.  Since all MODIS products are designed at a 1-km2 grid scale, it can be 
difficult to obtain accurate land cover in areas with complex vegetation, and misclassification 
can occur.  However, studies have suggested that the MODIS vegetation maps are accurate to 
within 65-80%, with higher accuracies for pixels that are largely homogeneous, and allow for 
consistent monitoring of the global land cover (Hansen et al. 2000). 

Table 4 The University of Maryland (UMD) landcover classification from MODIS land cover 
dataset (MOD12Q1) used in the MOD16 Algorithm.  The data field name is 
Land_Cover_Type_2 in the MOD12Q1 data field. 

UMD Land Cover Types 
Class Value Class Description 

0 Water 
1 Evergreen Needleleaf Forest 
2 Evergreen Broadleaf Forest 
3 Deciduous Needleleaf Forest 
4 Deciduous Broadleaf Forest 
5 Mixed Forest 
6 Closed Shrubland 
7 Open Shrubland 
8 Woody Savanna 
9 Savanna 
10 Grassland 
12 Cropland 
13 Urban or Built-Up 
16 Barren or Sparsely Vegetated
254 Unclassified 
255 Missing Data 

4.3. Time Variable MODIS Input Data 

As illustrated in Figure 2, the ET calculation also requires vegetation dynamic datasets, 
8-day MODIS FPAR/LAI (MOD15), and surface albedo from 8-day MCD43B2/MCD43B3.   

Fraction of absorbed photosynthetically active radiation (FPAR) and Leaf area index 
(LAI) 

The FPAR/LAI product is an 8-day composite product.  The MOD15 compositing 
algorithm uses a simple selection rule whereby the maximum FPAR (across the eight days) is 
chosen for the inclusion as the output pixel.  The same day chosen to represent the FPAR 
measure also contributes the current pixel’s LAI value.  This means that although ET is 
calculated daily, the MOD16 algorithm necessarily assumes that leaf area and FPAR do not vary 
during a given 8-day period.  Compositing of LAI and FPAR is required to provide an accurate 
depiction of global leaf area dynamics with consideration of spectral cloud contamination, 
particularly in the tropics.  
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MODIS Albedo 

 The MCD43B2/B3 albedo products are 8-day composite products.  Both Terra and Aqua 
data are used in the generation of this product, providing the highest probability for quality input 
data and designating it as an "MCD," meaning "Combined," product.  Version-5 
MODIS/Terra+Aqua BRDF/Albedo products are Validated Stage 1, indicating that accuracy has 
been estimated using a small number of independent measurements obtained from selected 
locations and time periods and ground-truth/field program efforts.  Although there may be later 
improved versions, these data are ready for use in scientific publications. 

BRDF/Albedo Quality product (MCD43B2) describes the overall condition of the other 
BRDF and Albedo products.  The MCD43B2 product contains 16 days of data at 1-km spatial 
resolution provided as a level-3 gridded data set in Sinusoidal projection, and includes albedo 
quality, snow conditions, ancillary information, and inversion information. 

MCD43B3 product provides 1-km data describing both directional hemispherical 
reflectance (black-sky albedo) at local solar noon and bihemispherical reflectance (white-sky 
albedo).  These MCD43B3 albedo quantities are produced from the16-day anisotropy models 
provided in MCD43B1 and represent averages of the underlying 500m values.  If black-sky 
albedos at different solar zenith angles are required then the MCD43B1 values should be used 
directly to generate them.  The MCD43B3 albedo quantities are provided as a level-3 gridded 
product in the Sinusoidal projection. 

Temporally interpolating MODIS data with bad QC or missing data 

The 8-day MOD15A2 LAI/FPAR (Myneni et al., 2002) and MCD43B3 (Schaaf et al., 
2002; Jin et al., 2003; Salomon et al., 2006) contain some cloud-contaminated or missing data.  
We temporally filled the missing or unreliable LAI/FPAR and MCD43B3 albedo at each 1-km2 
MODIS pixel based on their corresponding quality assessment data fields as proposed by Zhao et 
al. (2005).  The process entails two steps (see Fig. 5 in Zhao et al., 2005).  If the first (or last) 8-
day LAI/FPAR or MCD43B3 albedo is unreliable or missing, it will be replaced by the closest 
reliable 8-day value.  This step ensures that the second step can be performed in which other 
unreliable LAI/FPAR or MCD43B3 albedo will be replaced by linear interpolation of the nearest 
reliable values prior to and after the missing data point. 

Tropical rainforests, such as Amazon basin in South America, are the area where the 
cloud contamination is the most serious and the LAI seasonality is very small.  To explore how 
the QC-controlled interpolations alter and enhance the input MODIS data quality, we compare 
the 8-day composited LAI in the Amazon for the original data integrated from MOD15A2 
without the temporal interpolation and the enhanced LAI values with the interpolation for the 
period of March 21–28, 2001 during the wet season with the worst cloud contamination (Fig. 3). 
The original LAI values are too small (<2.0 m2/m2) for a large area surrounding the Amazon 
River, the result of severe cloud contamination.  The MODIS land cover indicates most forests in 
the northern South America in Figure 3 are evergreen broadleaf forests (EBF).  Field LAI 
observations revealed a mean LAI of 4.8±1.7 for 61 observations in tropical EBF (Asner et al., 
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2003; Malhi et al., 2004, 2006).  There are a few pixels for which the enhanced LAI values are 
smaller than the original data because of the bad QCs.  Overall, however, after temporal filling, 
LAI values in Amazon are much higher and the spatial pattern is more realistic. 

 
 
 
 
 
 
 
 
 
 
 
Figure 3 The 8-day composite leaf area index (LAI) in Amazon region for the 8-day period 081 (March 
21–28) in 2001 for (a) the original with no temporal interpolation of the LAI and (b) the temporally 
interpolated LAI. 

5. Parameterization of MOD16 ET Algorithm 

 Our method to calibrating parameters of BPLUT is largely based on the concept of water 
use efficiency (WUE), defined as the ratio of GPP to ET.  WUEs derived from eddy flux towers 
are used together with the mature MODIS GPP dataset to estimate the expected mean annual ET 
for each biome.  Below we first describe how we process measurements from flux towers, then we 
detail how we calibrate the BPLUT. 

5.1. Eddy Covariance Flux Towers 

The eddy covariance technique is a widely used and accepted method to measure 
ecosystem-scale mass and energy fluxes.  The AmeriFlux network was established in 1996, 
providing continuous measurements of ecosystem level exchanges of CO2, water, energy and 
momentum spanning diurnal, synoptic, seasonal, and interannual time scales and is currently 
composed of sites from North America, Central America, and South America 
(http://public.ornl.gov/ameriflux/).  AmeriFlux is part of a "network of regional networks" 
(FLUXNET) including more than 500 tower sites from about 30 regional networks across five 
continents, providing half-hourly to hourly measurements of carbon dioxide, water vapor, and 
energy exchanges between terrestrial ecosystems and the atmosphere across a diverse range of 
ecosystems and climates on a long-term basis (Baldocchi, 2008; 
http://www.daac.ornl.gov/FLUXNET/fluxnet.html).  The insights and constraints provided by the 
simultaneous measurement of these fluxes and their corresponding scalar fields ensure that Fluxnet 
provides an excellent data set for land surface model development and testing.   
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We obtained the level 4 measured meteorological data and latent heat flux (LE) data at 72 
AmeriFlux eddy covariance towers to calibrate parameters and test the performance of MOD16 
ET algorithm.  To ensure a reliable measured data from these towers, first, 51 towers were left 
after we excluded those towers with actual vegetation type different from MOD12 land cover type 
2 at any of the surrounding 3 x 3 1-km2 pixels.  Then we further excluded those towers with fewer 
than half a year of measurements during 2000-2006.  As a result, there are 46 AmeriFlux eddy 
covariance tower sites involved in WUE calaulation and evaluation of the algorithm.  The tower 
measured ET in water depth was calculated from tower measured LE data using the following 
equation, 

ܶܧ ൌ
ܧܮ
ߣ
																																																																	ሺ36ሻ 

where λ is the latent heat of vaporization (J kg-1).  MOD16 ET algorithm was tested at these 46 
AmeriFlux eddy covariance tower sites (Table 5, Fig. 4) with available level 4 ET measurements 
over 2000-2006.  These 46 flux towers cover nine typical land cover types and a wide range of 
climates.  The nine land cover types among the towers include evergreen needleleaf forest (ENF), 
evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), mixed forest (MF), open 
shrublands (OSH), close shrublands (CSH), woody_savanas (WL), grasslands (Grass), and 
croplands (Crop). 

 

Figure 4 Distribution  of  the  46  AmeriFlux  eddy  flux  towers  used  for  validation  of  the  improved  ET 
algorithm. The background is the MOD12Q1 land cover type 2, with the blue color for the water body.
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Table 5 The tower names, abbreviations, latitude (lat), longitude (lon), biome types in the 
parentheses, number of days with valid tower measurements (Days), average daily tower 
evapotranspiration measurements over all the days with valid values (ET_OBS: mm/day). 

Site Abbrev. 
lat lon Days 

ET_O
BS 

ARM_SGP_Main USARM (Crop) 36.6 -97.5 1129 1.43
Bondville USBo1 (Crop) 40.0 -88.3 1616 1.82
Mead_Irrigated USNe1 (Crop) 41.2 -96.5 1080 1.62
Mead_Irrigated_Rotation USNe2 (Crop) 41.2 -96.5 1022 1.56
Mead_Rainfed USNe3 (Crop) 41.2 -96.4 1027 1.46
Rosemount_G19_Alternative_Manage
ment_Corn_Soybean_Rotation USRo3 (Crop) 44.7 -93.1 573 1.35
Rosemount_G21_Conventional_Mana
gement_Corn_Soybean_Rotation USRo1 (Crop) 44.7 -93.1 574 1.39
Sky_Oaks_Old USSO2 (CSH) 33.4 -116.6 333 1.04
Bartlett_Experimental_Forest USBar (DBF) 44.1 -71.3 614 0.84
Missouri_Ozark USMOz (DBF) 38.7 -92.2 606 2.20
Morgan_Monroe_State_Forest USMMS (DBF) 39.3 -86.4 1483 1.16
Ohio_Oak_Openings USOho (DBF) 41.6 -83.8 371 1.94
UMBS USUMB (DBF) 45.6 -84.7 1205 1.22
Willow_Creek USWCr (DBF) 45.8 -90.1 1246 0.97
LBA_Tapajos_KM67_Mature_Forest BRSa1 (EBF) -2.9 -55.0 1008 3.08
LBA_Tapajos_KM83_Logged_Forest BRSa3 (EBF) -3.0 -55.0 1281 3.63
Blodgett_Forest USBlo (ENF) 38.9 -120.6 1586 1.99
Donaldson USSP3 (ENF) 29.8 -82.2 1585 2.68
Flagstaff_Unmanaged_Forest USFuf (ENF) 35.1 -111.8 308 1.24
Metolius_First_Young_Pine USMe5 (ENF) 44.4 -121.6 545 0.99
Metolius_Intermediate_Pine USMe2 (ENF) 44.5 -121.6 707 1.18
Metolius_New_Young_Pine USMe3 (ENF) 44.3 -121.6 361 0.93
Niwot_Ridge USNR1 (ENF) 40.0 -105.5 1535 1.54
UCI_1850 CANS1 (ENF) 55.9 -98.5 429 0.56
UCI_1930 CANS2 (ENF) 55.9 -98.5 431 0.57
UCI_1964 CANS3 (ENF) 55.9 -98.4 488 0.54
UCI_1964wet CANS4 (ENF) 55.9 -98.4 236 0.38
UCI_1981 CANS5 (ENF) 55.9 -98.5 503 0.58
UCI_1989 CANS6 (ENF) 55.9 -99.0 494 0.53
UCI_1998 CANS7 (ENF) 56.6 -99.9 411 0.59
Wind_River_Crane_Site USWrc (ENF) 45.8 -122.0 974 1.54
Wisconsin_Mature_Red_Pine USWi4 (ENF) 46.7 -91.2 308 2.09
ARM_SGP_Burn USARb (Grass) 35.5 -98.0 553 2.15
ARM_SGP_Control USARc (Grass) 35.5 -98.0 554 2.36
Atqasuk USAtq (Grass) 70.5 -157.4 244 0.11
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Audubon_Grasslands USAud (Grass) 31.6 -110.5 1431 0.78
Kendall_Grassland USWkg (Grass) 31.7 -109.9 929 0.63
Walnut_River USWlr (Grass) 37.5 -96.9 885 1.86
Fort_Peck USFPe (Grass) 48.3 -105.1 1095 0.77
Fort_Dix USDix (MF) 40.0 -74.4 412 1.56
Little_Prospect_Hill USLPH (MF) 42.5 -72.2 667 1.35
Sylvania_Wilderness USSyv (MF) 46.2 -89.3 825 0.89
Ivotuk USIvo (OSH) 68.5 -155.8 210 0.19
Flagstaff_Wildfire USFwf (WL) 35.4 -111.8 338 0.94
Freeman_Ranch_Mesquite_Juniper USFR2 (WL) 29.9 -98.0 649 2.08
Tonzi_Ranch USTon (WL) 38.4 -121.0 1342 1.13
Average   1.34

5.2 Pre-processing Tower Observed Data 

The AmeriFlux tower data are given every 30 minutes.  When the number (N) of the 
reliable 30-minute measurements is no less than 40 a day, the daily average values of the incoming 
solar radiation (SWrad), air temperature (Tavg), VPD, and LE are the averages of these 
measurements.  For each 30-minute time period, ET (mm/30minutes) is calculated as 

ߣ ൌ ሺ2.501 െ 0.002361 ൈ ௡ܶሻ ൈ 10଺ 

ܧ ௡ܶ ൌ
௡ܧܮ ൈ 60.0 ൈ 30.0

ߣ
																																		ሺ37ሻ 

where n is the nth 30-minute observation of each day, λ is calculated using the equation in 
Maidment’s book (Maidment, 1993).  When the number of the reliable 30-minute measurements 
(N) of both LE and T are no less than 40, the daily total ET is calculated as 

ܶܧ ൌ
∑ ܧ ௡ܶ ൈ 48ே
௡ୀଵ

ܰ
																																											ሺ38ሻ 

If N is less than 40, the daily measurements are set as fill value.  The daily maximum and minimum 
air temperatures are obtained through the process when calculating the daily average air 
temperature. 

The daytime and nighttime are distinguished by SWrad.  If SWrad >10.0 (W m-2), it’s 
daytime, otherwise, nighttime.  The measured daytime VPD (VPDday) and air temperature (Tday), 
and nighttime VPD (VPDnight) and air temperature (Tnight) are the averages over daytime and 
nighttime.  When there are fewer than 20 reliable measurements during daytime or nighttime, both 
daytime and nighttime values are set as fill value. 
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5.3 Parameterization 

For parameterization of the improved ET algorithm, we largely follow the method for 
calibrating parameters of MODIS GPP/NPP algorithm (Zhao et al., 2005).  Both MODIS 
GPP/NPP and MODIS ET algorithms use the same controlling factors from VPD and minimum 
temperature (Tmin) on stomatal conductance.  We first adopt the parameters of VPD and Tmin 
setting from those for MODIS GPP/NPP algorithm (Table 1), then calibrate other parameters for 
each biome.  Below we detail the procedure to parameterize MODIS ET. 

The tower derived annual GPP and tower measured annual ET were summed over all the 
available days divided by the number of years (≤365 days/yr).  Then annual average WUE for each 
tower site was calculated as  

ܧܷܹ ൌ
ܲܲܩ
ܶܧ

																			ሺ39ሻ 

For a given biome type in Table 1, the tower GPP, ET and WUE are averaged over all the towers 
with the same biome (Table 6).  Finally, the expected annual total ET for a given biome is 
calculated by using the multiyear mean annual total MODIS GPP (Zhao et al., 2005) and tower-
based WUE (listed in Table 6) as 

ܧ ௘ܶ௫௣ ൌ
ܲܲܩ	ܵܫܦܱܯ

ܧܷܹ
																			ሺ40ሻ 

We use ETexp as one target (Table 6) to calibrate other parameters in Biome-Property-Look-
Up-Table (BPLUT) except Tmin and VPD, which are directly adopted from MODIS GPP 
parameters as mentioned above.  Each time, the improved ET algorithm is run globally using a set 
of parameter values at the 0.5° resolution over 2000-2006.  The annual MODIS GPP and estimated 
annual MODIS ET averaged globally for each biome type (ETmod) may greatly differ from the 
tower GPP and ETexp because, 1) only 46 AmeriFlux tower sites are used to get tower GPP, ET 
and WUE, and thus they may not represent average conditions for a biome type at the global scale; 
2) WUE is the water use efficiency, which should be the ratio of GPP to ET via transpiration.  
Considering the evaporation included in ET, there is some bias in the calculated WUE and hence 
ETexp (Law et al., 2002).  Therefore, when we calibrate parameters in BPLUT at global scale, not 
only ETmod is compared to ETexp, but also the spatial pattern of average annual ET over 2000-2006 
is compared with Chen et al.’s 0.5° global precipitation data (Chen et al, 2002).  At the arid and 
semi-arid areas, up to 50% or even higher than 100% of the annual precipitation is returned to the 
atmosphere as ET (Mellouli et al.; 2000).  At the local scale, the improved ET algorithm is run at 
the 46 tower sites and the RMSE between the daily ET estimates and ET measurements is 
calculated.  We modify BPLUT and repeat the cycle of comparison till we choose one set of 
parameter values that perform the best both globally and locally for BPLUT (Table 1).  There are 
no towers with deciduous needle-leaf forest (DNF) or savannas (SV) in the 46 AmeriFlux towers.  
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We made an assumption that the ET for the DNF should be close to the one for ENF, and the ET 
for SV should be a little lower than the one for woody savannas. 

Table 6 The tower measured annual GPP, tower measured annual ET summed over all the 
available days divided by the number of years (≤365 days/year), and WUE calculated from 
equation (39) averaged over all the towers for each vegetation type; the annual MODIS GPP 
averaged over each vegetation type; the expected MODIS ET as calculated from equation (40); 
the actual average annual MODIS ET over each vegetation type. ENF: evergreen needleleaf 
forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous 
broadleaf forest; MF: mixed forest; WL: woody savannas; SV: savannas; CSH: closed shrubland; 
OSH: open shrubland; Grass: grassland, urban and built-up, barren or sparsely vegetated; Crop: 
cropland. N/A means that no data is available. 

LC Tower 
annual 
GPP (g 

C/m2/yr) 

Tower 
annual 

ET 
(mm/yr) 

Annual 
WUE (g 

C/mm/m2)

Annual 
MODIS 
GPP (g 

C/yr)

Expected 
annual 
MODIS 
ET 
(mm/yr)

Actual 
MODIS 

ET1* 
(mm/yr) 

Actual 
MODIS 

ET2* 
(mm/yr)

ENF 978.98 423.64 2.42 876.78 362.89 301.01 304.63
EBF 2781.55 1123.03 2.51 2698.53 1073.96 1180.16 1182.63
DNF N/A N/A N/A 727.00 N/A 334.57 349.54
DBF 1303.88 449.44 3.01 1340.12 444.94 533.47 474.53
MF 911.17 332.88 2.84 1133.64 398.60 488.12 499.44
CSH 909.51 484.82 1.80 811.91 451.88 333.31 334.66
OSH 193.60 160.2 1.35 308.79 229.04 272.34 270.19
WL 625.81 353.39 1.70 1368.58 805.20 925.62 944.41
SV N/A N/A N/A 1209.21 N/A 749.52 792.09
Grass 645.68 417.06 1.46 393.09 269.71 352.65 350.39
Crop 1089.70 536.79 1.97 883.91 447.82 472.84 470.49

1* means the MODIS ET driven by v4.0.0 GMAO; 2* means MODIS ET driven by MERRA 
GMAO 

6. Results and Uncertainties 

In this section, we show the validation results of MOD16 ET at eddy flux towers, global 
232 watersheds, as well as global results over the past 11 years (2000 to 2010).  We also discuss 
the sources of uncertainties to the global MOD16 ET product. 

6.1 Algorithm Performance at the Eddy Flux Tower Sites 

We cut out the input MODIS data for the 3 x 3 1-km2 pixels surrounding each tower.  We 
drove the MOD16 ET algorithm with both tower observed meteorological data and global GMAO 
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meteorological data.  We got the average ET estimates over those of the 3 x 3 1-km2 pixels where 
the tower actual vegetation type is the same as MOD12 land cover type 2.  Then we compared the 
ET estimates with the tower ET observations.  For each of the seven biome types among the 46 
flux towers except for CSH and OSH since there is only one tower with fewer than 365 
measurements for each of them, we chose one tower to show the performance of MOD16 ET 
algorithm (Fig. 5).  We use the Taylor skill score (Taylor, 2001) to evaluate the skill of the 
performances (Table 7). 

ܵ ൌ
4 ൈ ሺ1 ൅ ܴሻ

ሺߪො ൅ ොሻଶߪ/1 ൈ ሺ1 ൅ ܴ଴ሻ
																			ሺ41ሻ 

where R is the correlation coefficient, R଴ is theoretical maximum correlation, and σො is the standard 
deviation of ET estimates normalized by the standard deviation of ET measurements. 
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Figure 5 The ET measurements (black dots, OBS), the ET estimates driven by flux tower measured 
meteorological data (red lines) and GMAO meteorological data (blue lines) over 2000-2006 at seven 
tower sites, Donaldson (a), LBA Tapajos KM67 Mature Forest  (b), Willow Creek (c), Little Prospect Hill 
(d), Tonzi Ranch (e), Walnut River (f) and Bondville (g). 

The average daily ET biases between ET observations and ET estimates across the 46 
towers are -0.11 mm/day driven by tower meteorological data and -0.02 mm/day driven by GMAO 
meteorological data (Table 7).  The average mean absolute errors (MAE) are 0.33 mm day-1 
(tower-specific meteorology) and 0.31 mm day-1 (GMAO meteorology).  The MAE values are 
24.6% and 24.1% of the ET measurements, within the 10-30% range of the accuracy of ET 
observations (Courault et al. 2005; Jiang et al. 2004; Kalma et al. 2008).  The scores are 0.55 
(tower-specific) and 0.53 (GMAO) across the 46 towers. 

Table 7 The tower abbreviations, average daily tower evapotranspiration (ET) measurements 
over all the days with valid values (ET_OBS: mm/day); the biases (BIAS: mm/day), mean 
absolute biases (MAE: mm/day), correlation coefficients (R) and Taylor skill scores (S) of ET 
estimates relative to tower ET measurements for the 46 AmeriFlux eddy flux towers.  1: tower-
driven results; 2: GMAO-driven results. 

e f

g
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Site ET_OBS BIAS1 BIAS2 MAE1 MAE2 R1 R2 S1 S2 Citations 

USARM (Crop) 1.43 -0.62 -0.3 0.62 0.3 0.42 0.41 0.76 0.71  

USBo1 (Crop) 1.82 -0.3 -0.16 0.3 0.16 0.78 0.73 0.54 0.61  

USNe1 (Crop) 1.62 -0.6 -0.48 0.6 0.48 0.87 0.81 0.45 0.70  

USNe2 (Crop) 1.56 -0.62 -0.48 0.62 0.48 0.85 0.80 0.12 0.05  

USNe3 (Crop) 1.46 -0.47 -0.35 0.47 0.35 0.85 0.79 0.31 0.45  

USRo3 (Crop) 1.35 -0.22 -0.21 0.22 0.21 0.72 0.75 0.38 0.50  

USRo1 (Crop) 1.39 -0.27 -0.26 0.27 0.26 0.71 0.72 0.32 0.23  

USSO2 (CSH) 1.04 -0.71 -0.51 0.71 0.51 0.02 0.06 0.86 0.82  

USBar (DBF) 0.84 0.48 0.66 0.48 0.66 0.90 0.83 0.68 0.58 Jenkins et al., 2007 

USMOz (DBF) 2.2 -0.03 -0.08 0.03 0.08 0.84 0.76 0.10 0.16  

USMMS (DBF) 1.16 0.27 0.27 0.27 0.27 0.88 0.82 0.43 0.53  

USOho (DBF) 1.94 -0.14 -0.17 0.14 0.17 0.86 0.83 0.44 0.29  

USUMB (DBF) 1.22 -0.02 0.05 0.02 0.05 0.93 0.89 0.25 0.36  

USWCr (DBF) 0.97 0.18 0.35 0.18 0.35 0.91 0.85 0.77 0.89 Cook et al., 2004 

BRSa1 (EBF) 3.08 -0.44 -0.11 0.44 0.11 0.76 0.33 0.64 0.17 

Hutyra et al., 2007; 
Rocha et al., 2009; 
Fisher et al., 2009 

BRSa3 (EBF) 3.63 -0.29 -0.45 0.29 0.45 0.62 0.35 0.65 0.73  

USBlo (ENF) 1.99 -0.57 -0.58 0.57 0.58 0.65 0.24 0.87 0.35  

USSP3 (ENF) 2.68 0.28 0.51 0.28 0.51 0.52 0.48 0.80 0.50 
Gholz & Clark, 2002; 
Clark et al., 2004 

USFuf (ENF) 1.24 -0.59 -0.61 0.59 0.61 0.62 0.42 0.66 0.72  

USMe5 (ENF) 0.99 -0.11 0.01 0.11 0.01 0.25 0.26 0.28 0.26 Anthoni et al., 2002 

USMe2 (ENF) 1.18 -0.08 -0.1 0.08 0.1 0.32 0.29 0.25 0.24 Thomas et al., 2009 

USMe3 (ENF) 0.93 -0.37 -0.12 0.37 0.12 0.39 0.38 0.41 0.40 Vickers et al., 2010 

USNR1 (ENF) 1.54 -0.66 -0.69 0.66 0.69 0.68 0.64 0.60 0.59  

CANS1 (ENF) 0.56 0.1 0.04 0.1 0.04 0.74 0.70 0.56 0.52  

CANS2 (ENF) 0.57 0.08 0.03 0.08 0.03 0.78 0.75 0.14 0.26  

CANS3 (ENF) 0.54 0.12 0.11 0.12 0.11 0.75 0.73 0.77 0.85  

CANS4 (ENF) 0.38 0.24 0.27 0.24 0.27 0.71 0.76 0.85 0.87  

CANS5 (ENF) 0.58 0.18 0.19 0.18 0.19 0.77 0.71 0.46 0.48  

CANS6 (ENF) 0.53 0.14 0.09 0.14 0.09 0.76 0.72 0.92 0.92  

CANS7 (ENF) 0.59 -0.11 -0.17 0.11 0.17 0.74 0.69 0.67 0.72  

USWrc (ENF) 1.54 0.94 0.67 0.94 0.67 0.48 0.41 0.67 0.70  

USWi4 (ENF) 2.09 0.34 0.41 0.34 0.41 0.29 0.25 0.30 0.15  

USARb (Grass) 2.15 -0.51 -0.43 0.51 0.43 0.90 0.86 0.46 0.43  

USARc (Grass) 2.36 -0.77 -0.63 0.77 0.63 0.90 0.86 0.89 0.78  

USAtq (Grass) 0.11 0.02 0.16 0.02 0.16 0.11 
-

0.03 0.63 0.70 
 

USAud (Grass) 0.78 -0.37 -0.07 0.37 0.07 0.47 0.40 0.73 0.74  

USWkg (Grass) 0.77 -0.19 0 0.19 0 0.51 0.46 0.62 0.62  
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USWlr (Grass) 0.63 -0.3 0.11 0.3 0.11 0.85 0.80 0.22 0.13  

USFPe (Grass) 1.86 -0.15 -0.2 0.15 0.2 0.27 0.26 0.62 0.56  

USDix (MF) 1.56 0.43 0.87 0.43 0.87 0.69 0.68 0.51 0.54  

USLPH (MF) 1.35 0.81 0.83 0.81 0.83 0.86 0.76 0.66 0.54 Hadley et al., 2008 

USSyv (MF) 0.89 0.47 0.62 0.47 0.62 0.81 0.78 0.93 0.92 Desai et al., 2005 

USIvo (OSH) 0.19 0.02 0.02 0.02 0.02 0.35 
-

0.01 0.92 0.86 
 

USFwf (WL) 0.94 -0.43 -0.31 0.43 0.31 0.24 0.35 0.86 0.87  

USFR2 (WL) 2.08 -0.1 0.29 0.1 0.29 0.69 0.79 0.10 0.31  

USTon (WL) 1.13 0.01 0.02 0.01 0.02 0.78 0.75 0.37 0.32 
Baldocchi et al., 2004; 
Xu & Baldocchi 2003 

Average 1.34 -0.11 -0.02 0.33 0.31 0.65 0.58 0.55 0.53  

 

Figure 6 Comparisons of the average ET observations to the average daily ET estimates with the GMAO 
parameterized algorithm (a,b) and MERRA GMAO parameterized algorithm (c, d) across all the available 
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days at the 46 flux tower sites.  These data were created using (1) tower-specific meteorology (a, c), (2) 
global GMAO meteorology (b) and MERRA GMAO meteorology (d).  The solid red lines represent that 
the ratio of ET estimates to ET measurements is 1.0 and the solid black lines are the regression of the ET 
estimates to measurements. 

Figure 6 shows the comparisons of the average ET observations to the average daily ET 
estimates across all the available days at the 46 flux tower sites.  Both the GMAO parameterized 
algorithm and MERRA GMAO parameterized algorithm were driven by tower-specific 
meteorology (Fig. 6a, 6c) and the global meteorology (Fig. 6b, 6d).  The correlation coefficients 
between MOD16 ET estimates and the ET observations are 0.86 (tower-specific, Fig. 6a, 6c), 0.86 
(GMAO-driven, Fig. 6b) and 0.84 (MERRA GMAO-driven, Fig. 6d). 

6.2 Implementing ET Algorithm at the Global Scale 
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Figure 7 Global annual MOD16 evapotranspiration (top) over 2000-2006 driven by global GMAO 
(v4.0.0) meteorological data and (bottom) over 2000-2010 driven by global MERRA GMAO 
meteorological data. 

MOD16 ET algorithm were implemented globally at 1-km2 resolution using the preprocessed 
MODIS remote sensing data and 1) GMAO meteorological data over 2000-2006, 2) MERRA 
GMAO meteorological data over 2000-2010 as detailed in section 4.  Figure 7 shows that the 
highest ET happens over the tropical forests, whereas dry areas and areas with short growing 
seasons have the lowest estimates of ET.  The ET for temperate and boreal forests lies between 
the two extremes (Fig. 7).  Averaged over 2000-2006 (GMAO-driven) and 2000-2010 (MERRA-
GMAO driven), the total global annual ET over the vegetated land surface is 62.8ൈ103 km3, and 
63.4ൈ103 km3, respectively, a little less than 65.5ൈ103 km3 reported by Oki and Kanae (2006), 
because MOD16 ET doesn’t include urban and barren areas since there is no MODIS derived 
FPAR/LAI for these land cover types.  Figure 8 shows the histograms of the global annual ET by 
both GMAO and MERRA GMAO meteorological datasets.  The GMAO-driven global ET has a 
global average of 568 ± 378 mm yr-1, and the MERRA GMAO-driven global ET has a global 
average of 569 ± 358  mm yr-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Comparison of the histograms of climatological average of global annual evapotranspiration 
driven by GMAO meteorological data (red solid line) over 2000-2006 and by MERRA GMAO 
meteorological data (solid black line) over 2000-2010.  The GMAO-driven global average ET is 568.4 
mm/yr and 568.7 mm/yr driven by MERRA GMAO meteorology (see text).  These comparisons are only 
for vegetated land surfaces.  The vegetated land area is shown as the colored area in Fig. 7. 
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Based on MOD12Q1 land cover types 2, barren/deserts take up 24% of the Earth's land 
surface.  If we assume that the ET from the barren/deserts is zero, the average MODIS ET estimate 
with the improved algorithm over the entire land surface is 568*(100-24)/100=432 mm yr-1 
(GMAO-driven) or 569*(100-24)/100=432 mm yr-1 (MERRA GMAO-driven).  In reality, ET at 
the barren/deserts is not zero, so the ET estimates should be in the range of a little higher than 432 
(432) mm yr-1.  Over the entire land surface of the globe, precipitation averages around 750 mm 
yr-1 (Fisher et al., 2005).  Some studies concluded that ET returns more than 60% of precipitation 
on land back to the atmosphere (Korzoun et al., 1978; L'vovich and White, 1990).  Based on these 
published data, the actual ET over the global land surface should be around 750*60%=450mm yr-

1.  Our average MODIS ET estimate by the improved algorithm over the complete land surface is 
very close to the actual ET calculated from precipitation. 

Figure 9 shows zonal mean of global annual ET driven by GMAO over 2000-2006.  The 
peak happens at the southern tropical area, with the second peak at the northern tropical area where 
rainforests exist.  Liski et al. (2003) reported that the ET in boreal and temperate forests across 
Europe (34 sites) ranged from 328 to 654 mm yr-1, while the average ET was 466 mm yr-1 for 
Canada (18 sites) and 642 mm yr-1 for the US and Central America (26 sites) for biomes ranging 
from arctic tundra to tropical rainforest.  MOD16 ET estimates in boreal and temperate forests are 
within the range of these reported ET from field data. 

 

Figure 9 Climatological zonal mean of global annual evapotranspiration by GMAO meteorological data 
over 2000-2006. 

Seasonality 

Over 2000-2010, the ability of MOD16 ET algorithm to capture seasonality has been examined.  
Figure 10 shows the seasonality of global MOD16 ET.  In the Northern Hemisphere, spring 
(MAM, Fig. 10) is the onset of the growing season.  ET increases, reaching a peak in summer 
(JJA).  In autumn (SON), ET begins to drop, with the lowest values in winter (DJF).  Regionally, 
JJA and SON are relatively dry seasons in the Amazon, and Huete et al. (2006) found that 
vegetation grows better in dry seasons than in wet seasons (MAM and DJF).  Transpiration, the 
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major component of ET in dense vegetation, dominates.  Therefore, plants grow better during JJA 
and SON, and ET is higher (Fig. 10).  Hutyra et al. (2007) also found that ET and GPP are higher 
at a rainforest flux tower in Amazon in dry seasons than in wet seasons. 

 

 

 

 

 

 

 

 

 

Figure 10 Spatial pattern of the global MOD16 ET seasonality during 2000-2010. 

Interannual variability 

The MOD16 ET algorithm also has the ability to capture the responses of terrestrial 
ecosystems to extreme climatic variability at the regional scale.  We drove the MOD16 ET 
algorithm with global MERRA GMAO meteorological data and Collection 5 1-km2 
MCD43B2/MCD43B3 to produce the 1-km2 global terrestrial MOD16 ET product over 2000-
2010.  The ratio of ET to PET is commonly used as an indicator of wetness or droughts.  Figure 
11 shows the anomalies of global ET to PET ratio at growing season from 2000-2009 as 
estimated from the MODIS-based ET product, demonstrating the sensitivity of terrestrial 
ecosystem to widespread drought in North America and China in 2000 (Cook et al., 2007; Fan et 
al., 2003; Pandey et al., 2007); extensive drought over North America and Australia in 2002 (Cook 
et al., 2007; Lawrimore et al., 2002; Horridge et al., 2005); heat wave in Europe (Ciais, et al., 2005) 
and drought in Australia in 2003 (Nicholls, 2004); severe droughts in Amazon, Africa and 
Australia in 2005 (Phillips et al., 2009; Hopkin, 2005; Watkins, 2005).  However, a negative 
anomaly of ET/PET ratio in southern China in 2008 was not caused by drought but by damaged 
trees during severe snow storm in January 2008 (Zhou et al, 2010).  The damaged trees lowered 
the plant transpiration in summer, and hence lowered ET and ET/PET.  PET in our CDR can be 
used to rule out these false droughts.  Though radiation is the dominant limiting factor for 
vegetation growth in the Amazon (Nemani et al., 2003), the Amazon experienced the worst 
drought in 40 years during 2005 (Hopkin, 2005), and water became the dominant limiting factor 
(Phillips et al., 2009; Zhao and Running, 2010).  Combining global MOD16 ET/PET and 
MOD13A2 NDVI products, Mu et al. (2013) developed a MODIS global terrestrial drought 
severity index to monitor and detect droughts and to help the decision makers to mitigate the 
adverse effects from droughts. 
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Figure 11 Spatial pattern of global MODIS ET to PET ratio anomalies during 2000-2009. Large-scale 
ET/PET negative anomalies were mainly caused by droughts. 

6.3 Algorithm Performance at Global Watersheds 

As a different more spatially integrated evaluation, we obtained the stream flow data at 
global watersheds (Dai et al., 2009).  Theoretically, over a relatively long time period, gauged 
catchment ET can be roughly estimated as the difference between precipitation and stream flow 
by assuming that there is no change in soil water storage (Budyko, 1974; Donohue et al., 2007).  
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The average annual gridded precipitation data of Chen et al (2002) and the Global Precipitation 
Climatology Centre (Rudolf and Schneider, 2005) was subtracted by stream flow to get pseudo 
ET observations (ET OBS) for the watersheds.  232 watersheds having at least five years of 
water discharge data were used to do the comparison (Fig. 12).  Figure 12 shows the comparison 
of annual pseudo ET OBS from these 232 watersheds with the MODIS ET (driven by MERRA 
GMAO meteorology) averaged over each watershed over at least five years during 2000-2006.  
The MOD16 ET estimates can explain 85% of the variations of the pseudo ET observations for 
these 232 watersheds. 

 

 

 

 

 

 

 

Figure 12 (Left) Distribution of the 232 watersheds used for validation of global MOD16 ET 
data. Each watershed is depicted in yellow. (Right) Comparison of annual pseudo ET 
observations (ET OBS, precipitation minus stream flow) from the 232 watersheds and the 
MODIS ET estimates averaged over each watershed over at least five years during 2000-2006.  
The runoff data for the watersheds were provided by Ke Zhang. 

6.4 Uncertainties 

The existing biases between the ET estimates and the ET measurements arises from below 
major causes, 

1) Algorithm input data.  MODIS LAI and FPAR (MOD15) are of the most important 
biophysical variables that control the exchange of energy, mass (e.g., water and CO2) and 
momentum between the earth surface and atmosphere (Dickinson et al., 1993; Sellers et al., 1996; 
Tian et al., 2004; Demarty et al., 2007).  However, there are uncertainties in MODIS LAI/FPAR 
retrievals, for example, MODIS LAI tends to be higher and the growing season is too long over 
boreal forests (Demarty et al., 2007).  MODIS LAI validation suggests three key factors that 
influence the accuracy of LAI retrievals: 1) uncertainties in input land cover data, 2) uncertainties 
in input surface reflectance, and 3) uncertainties from the model used to build the look-up tables 
accompanying the algorithm (Yang et al., 2006).  Mu et al. (2012) analyzed the variance and 
uncertainty in MOD16 ET driven by three different meteorological datasets, GMAO, ECMWF 
and NCEP1.  MOD16 ET driven by GMAO has more detailed spatial ET variations than the other 
two, largely because first, GMAO has the finest resolution (1.00°x1.25°) among the three 
meteorological datasets, and second, overall, GMAO has the best quality at the global scale, except 
for its low radiation in equatorial regions.  Heinsch et al. (2006) compared tower meteorological 
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data with GMAO data, and the 1-km2 Collection 4 MODIS LAI (MOD15) and MODIS land cover 
(MOD12) with ground-based measurements, finding existing biases in both the GMAO data and 
the MODIS data when compared to observations.  While approximately 62% of MODIS LAI 
estimates were within the estimates based on field optical measurements, remaining values 
overestimated site values (Heinsch et al., 2006).  Comparison of LAI at the patch level can 
significantly improve the agreements, but the Collection 3 MODIS LAI still tends to be higher 
(Wang et al., 2004).  Overestimates of LAI may result in overestimates of ET even if other input 
data such as the meteorological data and MODIS albedo data are relatively accurate.  Although 
the temporal filling of unreliable MODIS data, including LAI, FPAR and albedo, greatly improves 
the accuracy of inputs, the filled values are artificial and contain uncertainties.  There is a 
hypothesis that all the uncertainties associated with the MODIS data are contained in the quality 
flags MODIS QA, an assumption which proved efficient for reducing the weight of unreliable 
satellite products, especially over tropical forests (Demarty et al., 2007).  However, the MODIS 
QA remains a qualitative measure of uncertainty, and does not quantitatively accounts for each 
source of error in the MODIS data retrieval procedure (sensor calibration, atmospheric corrections, 
land cover mapping radiative transfer forward and inverse modelling) (Demarty et al., 2007).  
Also, the inaccuracy in MODIS FPAR will lead to miscalculation of Fc, and hence ET.  All of 
these uncertainties from inputs can introduce biases in ET estimates that are difficult to detect. 

2) Inaccuracy in the measured data.  Currently, the ground data from the eddy covariance 
flux towers provide the best ET estimates.  However, they have an error or uncertainties of about 
10-30% based on comparison of multiple towers at the same site, or by comparison with 
independent measurements of ET by other methods such as lysimeters or sap flux sensors (Glenn 
et al., 2008b).  Also, the eddy covariance flux towers have an energy balance closure problem that, 
the sum of the net radiation and the ground heat flux, was found in most cases to be larger than the 
sum of turbulent fluxes of latent heat and sensible heat (Aubinet et al., 2000; Wilson et al., 2002).  
Correcting error and reducing uncertainty in the ET measurements are still uncertain due to the 
closure error (Shuttleworth, 2007).  Scott (2010) used the watershed water balance to evaluate the 
accuracy of eddy covariance ET measurements at three semiarid ecosystems, and found that eddy 
covariance towers usually underestimated the ET at high values and overestimated the ET at the 
low values. 

3) Scaling from tower to landscape.  The measuring height and the horizontal scale of 
measurement of the turbulent fluxes like latent heat fluxes and sensible heat fluxes, usually 2-5m, 
have significant influences on the footprint (Schmid, 1997) and the size of underlying surface 
(Foken, 2008).  Also, the complex terrain (Aubinet et al., 2005; Feigenwinter et al., 2008) and 
complicated canopy structure, the stochastic nature of turbulence (Hollinger and Richardson, 2005; 
Moncrieff et al., 1996) can affect the eddy covariance measurements (Yi et al., 2010).  The 
comparison of measured ET with the estimated from the 3  3 1-km2 MODIS across all 46 sites 
may introduce uncertainties due to the differences in tower footprints for different towers and 
under varying environmental conditions for a given tower.  For example, among the 46 towers 
used to examine the performance of the ET algorithms, there are seven eddy covariance towers at 
MB, Canada (CANS1…7), which are very close and are all ENF (Table 5).  The ET measurements 
at the seven CANS towers are quite different, with the average daily ET ranging from 0.38 to 0.59 
mm day-1 (Table 7).  The magnitudes and interannual variability substantially differ among the 
seven CANS towers.  And in heterogeneous areas, the differing scales of the tower and MODIS 
ET estimates should be performed via an upscaling process, such as that used during the Bigfoot 
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MODIS validation project (Cohen et al., 2003; Turner et al., 2003a, 2003b).  The expense and 
intensity of such studies, however, limits our ability to perform such comparisons. 

4) Algorithm limitations.  A large number of physical factors are involved in soil surface 
evaporation and plant transpiration processes, including microclimate, plant biophysics for site 
specific species and landscape heterogeneity, making accurate assessment of ET a challenge 
(Friedl, 1996; Vörösmarty, et al., 1998; McVicar et al, 2007).  Some issues remaining in the ET 
algorithm may contribute to the differences between the tower ET measurements and the ET 
estimates by the algorithm.  The algorithm doesn’t account for the stand age, disturbance history 
or species composition.  Biophysical parameters such as gl_sh, rblmax and rblmin, VPDopen and 
VPDclose used in the algorithm have uncertainties since the same values are used for a given biome 
type globally.  We have little knowledge regarding some parameters (e.g., the soil heat fluxes, the 
boundary layer resistance for soil evaporation) and the mechanisms involved.  Although it is 
generally assumed that stomata close at night, several studies have documented nighttime stomatal 
opening in many species over a range of habitats (Musselman and Minnick 2000).  Incomplete 
stomatal closure during the night is observed in a diverse range of vegetation types (Daley and 
Phillips, 2006; Caird et al., 2007; Zeppel et al., 2010).  Assumption of the stomata closure at night 
can induce biases to the nighttime plant transpiration, and hence induce underestimated daily total 
ET.  Increasing CO2 content tends to reduce plant transpiration due to a high-CO2 induced partial 
stomatal closure (Idso and Brazel, 1984).  Within one or two decades, this effect on ET may be 
negligible; however, as data record lengthening, this effect is needed to account for.  As a result, 
theoretically, we may overestimate ET.  We will add antitranspiration effect from enriched CO2 to 
the transpiration module in our algorithm when we study the long-term remotely sensed ET 
changes. 

7.  MOD16 Products 

 This section details MOD16 variables, data file format, map projection, file name, and 
size. 

7.1 MOD16 Variables 

The 8-day ET (0.1mm/8days for the 8-day before the last 8-day of a year or 0.1mm/5days 
for the last 8-day) is the sum of ET during these 8-day time periods (5 days for 361 composite 
data in regular years and 6 days for a leap year).  The monthly ET (0.1mm/month) is the sum of 
monthly ET. For February, there are 29 days in a leap year and 28 days in regular years.  The 
annual ET (0.1mm/yr) is the sum of the ET during each year. There are 366 days in 2000, 2004, 
2008, and 365 days in 2001, 2002, 2003, 2005, 2006, 2007, 2009, and 2010.  The 8-day, monthly 
and annual latent heat flux (LE)/potential LE (PLE) (10-4 J/m2/day) is the average daily LE/PLE 
over the corresponding time period. 

The users should multiply 0.1 to get the real ET/PET values in mm/8day or mm/month, 
or mm/yr, and 104 to get LE/PLE in J/m2/day. 

For the 8-day and monthly ET/LE/PET/PLE, annual LE/PLE, the valid value range is      
-32767-32700. 
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Fill value, out of the earth 32767 
Water body 32766 
Barren or sparsely vegetated 32765 
Permanent snow and ice 32764 
Permanent wetland 32763 
Urban or Built-up 32762 
Unclassified 32761 

For the annual ET/PET, the valid value range is 0- 65500. 

Fill value, out of the earth 65535 
Water body 65534 
Barren or sparsely vegetated 65533 
Permanent snow and ice 65532 
Permanent wetland 65531 
Urban or Built-up 65530 
Unclassified 65529 

The MOD16 global evapotranspiration (ET)/latent heat flux (LE)/potential ET 
(PET)/potential LE (PLE) datasets are regular 1-km2 land surface ET datasets for the 109.03 
Million km2 global vegetated land areas at 8-day, monthly and annual intervals.  The dataset 
covers the time period 2000 – 2010.  Future years will be produced and posted periodically, but 
not in near-real time. 

The output variables include, 8-day, monthly and annual ET, LE, PET, PLE and 8-day, 
annual quality control (ET_QC).  The 8-day MOD16A2 QC field is inherited from MOD15A2 in 
the same period.  However, the cloud-contaminated FPAR/LAI has been temporally filled with 
those having good QC.  For annual QC of MOD16A3 products, we used the method proposed by 
Zhao et al. (2005) to define a more meaningful annual ET QC as 

QC ൌ 100.0 ൈ NU୥ Total୥⁄  

where NUg is the number of days during growing season with unreliable or missing MODIS LAI 
inputs, and Totalg is total number of days in the growing season.  The growing season is defined 
as all days with Tmin above the value where stomata close as in the BPLUT.  The MOD16 ET 
algorithm has a good performance in generating global ET data products, providing critical 
information on global terrestrial water and energy cycles and environmental changes (Mu et al., 
2007, 2009, 2011). 

7.2 MOD16 HDFEOS 10-degree Tiles, Map Projection and File Name 

 As a level 4 MODIS data product, the MOD16 global ET dataset follows the high level 
of global MODIS data structure and file format.  The data are saved in HDFEOS (Hierarchical 
Data Format - Earth Observing System) file format with Sinusoidal map projection, an equal- 
area global map projection.  As shown in Figure 13, the globe is divided into 36 (horizontal 
direction) by 18 (vertical direction) tiles with each tile called a MODIS “10-degree” tile.  For 
MODIS land products, there are 317 tiles with land pixels.  For MOD16 ET, similar to the level 
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3 FPAR/LAI and level 4 MODIS GPP/NPP data products, we further exclude 31 tiles with no 
vegetated pixels.  These excluded 31 tiles are located in high latitudes beyond 80˚N and 60˚S. 

 

 

 

 

 

 

 

 

 

 

Figure 13 MODIS Sinusoidal “10-degree” tile system.  For land data products, there are 317 
tiles with land pixels, of which 286 tiles with vegetated pixels located between 60˚S to 80˚N. 

The MOD16 file name has the same naming style as other high level of MODIS data 
products.  For example, the filename MOD16A2.A2002081.h02v06.105.2010355155223.hdf 
indicates: 

 MOD16A2 - Product Short Name 
 .A2002081 - Julian Date of Data Acquisition (A-YYYYDDD) 
 . h02v06 - Tile Identifier (horizontalXXverticalYY) 
 .105 - Collection Version 
 . 2010355155223 - Julian Date and time of being generated (YYYYDDDHHMMSS) 
 .hdf - Data Format (HDF-EOS) 

For a nominal “1‐km” MODIS ET, it has 1200 by 1200 pixels in a tile and the real spatial resolution for a 

pixel is [(10 / 1200) / 180] * Pi * 6371007.181 = 926.6254331 meters, and here 6371007.181 meters is 

the earth radius used by MODIS Sinusoidal map projection. 

MOD16 products have only one sources of metadata: the embedded HDF metadata.  The 
HDF metadata contains valuable information including global attributes and data set-specific 
attributes pertaining to the granule.  Some key features of certain MODIS metadata attributes 
include the following: 

• The XDim and YDim represent the rows and columns of the data, respectively  
• The Projection and ProjParams identify the projection and its corresponding projection 
parameters.  The value of projection is GCTP_SNSOID. The 1-dimentioanl array of 
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ProjParams contains other parameters for map projection.  The first value 
6371007.181000 is the earth radius used by MODIS high level data products. 
• The UpperLeftPointMtrs is in projection coordinates, and identifies the very upper left 
corner of the upper left pixel of the image data  
• The LowerRightMtrs identifies the very lower right corner of the lower right pixel of 
the image data. These projection coordinates are the only metadata that accurately reflect 
the extreme corners of the gridded image  
• There are additional BOUNDINGRECTANGLE and GRINGPOINT fields within the 
metadata, which represent the latitude and longitude coordinates of the geographic tile 
corresponding to the data  

The Data Set attributes contain specific SDS information such as the data range and 
applicable scaling factors for the data.  An HDF-EOS file also contains EOS core metadata 
essential for EOS search services. 

Currently, there is some free or commercial software able to deal with MODIS HDFEOS 
files, such as MODIS Reprojection Tool (MRT), HDF-EOS to GeoTIFF converter (HEG), 
IDL/ENVI, ERDAS etc. 

7.3 MOD16 Product Data Size 

8-day MOD16A2 

It contains five variables, including ET_1km, LE_1km, PET_1km, PLE_1km, 
ET_QC_1km.  The first four variables are in 2-byte short integer and the last one in 1-byte 
unsigned integer.  Therefore, the five variables have nine bytes.  Then in theory, for a one year 
(46 8-day) 286 tiles 1-km global data, they will have a size equal to 9 * 1200 * 1200 * 286 * 46 
= 0.17 TB.  Thanks to the powerful capability of internal compression of HDF, only about 17% 
of size is required for the internal-zipped HDFEOS.  As a result, global 8-day MOD16A2 
requires about 30 GB for each year. 

Monthly MOD16A2 

It only contains ET_1km, LE_1km, PET_1km, PLE_1km which have the same data types 
as the corresponding four variables as in the 8-day MOD16A2 product.  In theory, for one year, 
total data size should be 8 * 1200 * 1200 * 286 * 12 = 40 GB.  After internal compression, about 
20% of size is required, and global monthly MOD16A2 requires about 8.1 GB for each year. 

Annual MOD16A3 

It contains five variables, including ET_1km, LE_1km, PET_1km, PLE_1km, 
ET_QC_1km.  The first four variables are in either singed or unsigned 2-byte short integer, and 
the last one is in unsigned one-byte integer.  For one year, the data size should be 9 * 1200 * 
1200 * 286 = 4 GB, and the internal compression results in 0.9 GB of global MOD16A3 for 
each year. 

In all, for each year, MOD16 ET product requires 30 + 8.1 + 0.9 = 39 GB.  For 11 
years from 2000 through 2010, there are totally about 429 GB data for the global MOD16 
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A2/A3 product.  Note that we haven’t mentioned the space of all the input datasets to the global 
MOD16 algorithm, which are detailed in section 4 above. 

8. Summary 

Table 8. 321 users from 38 countries requesting MODIS ET/PET/LE data over 2006-2012. N: 
number of users. 

N Country N Country N Country N Country N Country 
20 Australia 2 Czech 

Republic 
2 Iran 1 Poland 5 Switzerland 

1 Azerbaijan 1 Columbia 3 Italy 1 Portugal 1 Thailand 
1 Argentina 5 Denmark 2 Japan 1 North Africa 1 Tunisia 
4 Austria 3 Ethiopia 1 Mexico 7 S. Africa 12 UK 
2 Belgium 8 France 1 New Zealand 8 S. Korea 144 USA 
6 Brazil 1 Bolivia 1 Nepal 3 Spain 1 W. Africa 
8 Canada 10 Germany 11 Netherlands 2 Sri Lanka   
22 China 13 India 1 Peru 5 Sweden   

ET from the land surface is a key water cycle variable which is directly related to energy 
budgets, water cycle, daily meteorology and climate, and ecosystem carbon fluxes.  Terrestrial 
ecosystems are an inherent participant in the surface water cycle and energy exchange, and thus 
ET is also a metric of ecosystem services, functions and status of ecosystem health.  With 
climate change, the frequency, intensity and duration of droughts have increased (Zhao and 
Running, 2010; Dai, 2011; Mu et al., 2013).   There is a strong demand for regular regional and 
global ET products at satellite sensor’s spatial resolution from the scientific community, land 
managers and policy makers for the purposes of water management and environmental 
monitoring.  Extensive activities have been carried out to validate the MOD16 product at 
different ecosystems globally with results having been and being published.  Evaluating the 
performance of MOD16 ET algorithm at tower site level, watershed level and globally verifies 
the reliability of the MOD16 ET product (Ruhoff et al., 2012; Xia et al., 2012).  High-resolution 
land surface water and energy balances are greatly desired by vast users.  MOD16 ET dataset has 
been widely used by different communities and got some very interesting scientific findings, 
with one published in Nature and another on Nature Climate Change (Montenegro et al., 2009; 
Jung et al., 2010; Loarie et al., 2011; Lathuillière et al., 2012; Mu et al., 2011b; Sun et al., 2011).  
There had been 268 scientists from 32 countries contacting us for using MOD16 ET data over 
2000-2012, even though we released the data to the public in Jan. 2011 (Table 8).  Now MOD16 
ET data is ready for users to download and answer relevant environmental questions. 
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