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Abstract

This document details the structural definition, development process, and functional
flow of the MODIS Land-Cover Product. The Land Cover and Land-Cover Change
Parameters were proposed by the MODIS Land Team, with Team Member Alan Strahler
leading the effort. The Land Cover Parameter is a 1-km product provided on a quarterly
basis beginning about one year following the acquisition of a global dataset by the MODIS
instrument aboard the EOS-A platform (Terra) in July, 1999. The Land-Cover Change
Parameter is a post-launch, near-term parameter also planned for quarterly delivery.

Both parameters rely on a 1-km gridded database composited from MODIS Level 2
and 3 products. Inputs include: (1) EOS land/water mask that restricts classification to
land regions and shallow water regions; (2) Nadir BRDF-adjusted Reflectances (NBARs)
derived from the MODIS BRDF/Albedo product (MOD43B4) in the MODIS Land Bands
(1-7), adjusted to nadir view at the median sun angle of each 16-day period; (3) spatial
texture derived from Band 1 (red, 250-meter) at 1000-m resolution MODAGTEX); (4)
directional reflectance information at 1k for 16-day periods (MOD43B1); (5) MODIS
Enhanced Vegetation Index (EVI) at 1km for 16-day periods (MOD13); (6) snow cover
at 500m for 8-day periods (MOD10); (7) land surface temperature at 1 km for 8-day
periods (MOD11); and (8) terrain elevation information (MOD03). These data are
composited over a one-month time period to produce a globally-consistent, multitemporal
database on a 1-km grid as input to classification and change characterization algorithms.

The Land Cover Parameter recognizes 17 categories of land cover following the
International Geosphere-Biosphere Program (IGBP) scheme. This set of cover types
includes eleven categories of natural vegetation covers broken down by life form, three
classes of developed and mosaic lands, and three classes of non-vegetated lands.

Land cover classes are produced by processing the 32-day database using decision tree
and artificial neural network classification algorithms to assign land cover classes based on
training data. To reduce computational overhead and increase flexibility, classification
proceeds by continents.

The Land-Cover Change 1-km Parameter is designed to quantify subtle and
progressive land-surface transformations, i.e., land cover modifications, as well as obvious
and instantaneous changes, such as land cover conversions. As such, it is not a
conventional change product that simply compares land cover databases at two different
times and identifies changes in categorical land cover. The algorithm for the Land-Cover
Change Parameter combines analyses of change in multispectral-multitemporal data
vectors with models of vegetation change mechanisms to recognize both the type of
change as well as its intensity.

The algorithm development and validation efforts for the Land Cover Product are
based on a network of test sites developed to represent major global biomes and cover
types. Prelaunch efforts have focused on sites for which temporal sequences of Thematic
Mapper (TM) and Advanced Very High Resolution Radiometer (AVHRR) data, coupled
with fine-resolution land cover and vegetation data, are available, especially in North and
South America. In the postlaunch period, a global suite of sites will be used to train the
classifier and validate its output. Landsat-7 and ASTER images will be particularly useful
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for updating information about test sites and identifying local change processes. The
validation procedure will characterize the accuracy of the product as well as provide
information that can be used in spatial aggregation to provide land cover and land-cover
change data at coarser resolutions.

Land Cover Parameter products will be released about three months after the
acquisition of a year of 32-day composites for a given region. Full global production of
land cover will be reached as global production of input products is achieved. In the
interim, a number of prototype land cover products will be produced. The Land-Cover
Change Parameter, which requires two years of data, will be similarly phased in, with
interim prototypes made available in the early-postlaunch period.
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1. Introduction

1.1 Identification

MODIS Product No. 12 (MOD12)
Parameter

Number  Parameter Name
Spatial

Resolution
Temporal
Resolution

2669 Land Cover Type, 1-km 1 km 4/yr
TBD Land Cover Type, CMG 1/4° 4/yr
2671 Land-Cover Change, 1-km 1 km 4/yr

1.2 Overview

This document details the structural definition, development process, and functional
flow of the MODIS Land-Cover Product. It represents a revision of the Version 3.0
(Strahler et al., 1995) and Version 4.1 (Strahler et al., 1996) Land Cover ATBDs, and no
longer contains ATBD reviews and responses. The Land Cover Parameter is a 1-km
product provided on a quarterly basis beginning about one year following the acquisition
of global data after the launch of the MODIS instrument aboard the EOS-AM1 (Terra)
platform in July, 1999. It will also be prepared on a 1/4° grid for use by global modelers.
The Land-Cover Change 1-km Parameter is a post-launch, near-term parameter. The Land
Cover and Land-Cover Change 1-km Parameters rely on a 1-km gridded database
assembled from MODIS Level 3 products produced on 8- or 16-day cycles. Inputs
include:

(1) EOS Land/water mask that restricts classification to land regions and 
shallow water regions.

(2) Nadir BRDF-adjusted Reflectances (NBARs) derived from the MODIS
BRDF/Albedo product (MOD43B4) in the MODIS Land Bands (1-7), adjusted to
nadir view at the median sun angle of each 16-day period;

(3) Spatial texture derived from Band 1 (red, 250-meter) at 1000-m resolution
MODAGTEX);

(4) Directional reflectance information at 1 km for 16-day periods (MOD43B1)

(5) MODIS Enhanced Vegetation Index (EVI) at 1 km for 16-day periods (MOD13);

(6) Snow cover at 500 m for 8-day periods (MOD10);

(7) Land surface temperature at 1 km for 8-day periods (MOD11);
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(8) Terrain elevation information (MOD03);

The temporal resolution of this database is 32 days, corresponding to two complete
MODIS orbit cycles.

The Land Cover Parameter recognizes 17 categories of land cover following the
scheme adopted by the International Geosphere and Biosphere Programme (IGBP)
(Belward and Loveland, 1995) for application to global 1-km AVHRR LAC NDVI
(Advanced Very High Resolution Radiometer, Local Area Coverage, Normalized
Difference Vegetation Index) composites. This set of cover types includes eleven
categories of natural vegetation covers broken down by life form, three classes of
developed and mosaic lands, and three classes of non-vegetated lands.

Land cover classes are assigned by processing the 32-day database using decision tree
and artificial neural network classifiers trained by site data. To reduce computational
overhead and increase flexibility, classification proceeds by continents.

The Land-Cover Change 1-km Parameter is designed to quantify subtle and
progressive land-surface transformations, i.e., land cover modifications, as well as obvious
and instantaneous changes, such as land cover conversions. As such, it is not a
conventional change product that simply compares land cover databases at two different
times and identifies changes in categorical land cover. The algorithm for the Land-Cover
Change Parameter combines analyses of change in multispectral-multitemporal data
vectors with models of vegetation change mechanisms to recognize both the type of
change as well as its intensity.

The algorithm development and validation efforts for the Land Cover Product are
based on a network of test sites chosen to represent major global biomes and cover types.
Prelaunch efforts have focused on sites for which temporal sequences of TM and
AVHRR, and fine-resolution land cover and vegetation data are available, especially North
and South America. Postlaunch, global sites will be used to train the classifier and validate
its output. Landsat-7 and ASTER images will be particularly useful for updating
information about test sites and identifying local change processes. The validation
procedure will characterize the accuracy of the product as well as provide information that
can be used in spatial aggregation to provide land cover and land-cover change data at
coarser resolutions.

Land Cover Parameter products will be released about three months after the
acquisition of a year of 32-day composites for a given region. Full global production of
land cover will be reached as global production of input products is achieved. In the
interim, a number of prototype land cover products will be produced. The Land-Cover
Change Parameter, which requires two years of data, will be similarly phased in, with
interim prototypes made available in the early-postlaunch period.

1.3 Document Scope

The remainder of this document is organized into four broad sections following the
prescribed format. Section 2 will discuss the rationale for the development of the Land
Cover Product, provide a historical context and background information, describe the
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system of land cover units, and discuss MODIS in terms of its ability to facilitate and
improve capabilities for characterizing land cover and land-cover change on a global scale.
The objective of section 3 is to define the overall structure of the algorithms; present the
mathematics and practical descriptions of the primary algorithm components; present the
use of training sites in calibration and validation; discuss sources of error and uncertainty;
address practical issues that are likely to arise; discuss preprocessing considerations,
computing needs, and reliance on other MODIS activities; detail the calibration and
validation phase of the algorithms; and discuss postlaunch product validation. Section 4
addresses potential constraints and limitations.

1.4 Applicable Documents and Publications

The following publications on land cover issues have been supported, in full or in part,
by MODIS funding to Boston University.

Abuelgasim, A., S. Gopal, and A. Strahler, 1997. Forward and inverse modeling of
canopy directional reflectance using an artificial neural network. International
Journal of Remote Sensing 19(3):453–471.

Abuelgasim, A., S. Gopal, J. Irons, and A. Strahler, 1996. Classification of ASAS
multiangle and multispectral using artificial neural networks. Remote Sensing of
Environment 57(2):79-87.

Abuelgasim, A. and S. Gopal, 1994. Classification of multiangle and multispectral
ASAS data using a hybrid neural network model. Proceedings of the 1994
International Geoscience and Remote Sensing Symposium, Aug. 8–12, 1994,
Pasadena, CA, 3:1670–1675.

Barnsley, M. J., D. Allison, and P. Lewis, 1997. On the information content of
multiple-view-angle (MVA) images. International Journal of Remote Sensing,
18(9) 1937-1960.

Borak, J. S., 1999. Identification of Land-Cover Change and Interannual Climate
Variability in Africa from Satellite Imagery, Ph.D. dissertation, Boston
University

Borak, J. S., E. F. Lambin and A. H. Strahler, 1999, The use of temporal metrics for
land-cover change detection at coarse spatial scales. International Journal of
Remote Sensing, in press.

Borak, J. S. and A. H. Strahler, 1999, Feature selection and land cover classification
of a MODIS-like data set for a semiarid environment. International Journal of
Remote Sensing 20:919–938.

Borak, J. S., E. F. Lambin and A. H. Strahler, 1998, Detection and validation of land-
cover change at coarse spatial scales in Africa. Proceedings of the 1998
International Geoscience and Remote Sensing Symposium, Seattle, Washington,
July 6–10, 1998, 5:2518–2520.

Borak, J. S. and A. H. Strahler, 1996, Feature selection using decision trees—An
application for the MODIS land cover algorithm. Proceedings of the 1996
International Geoscience and Remote Sensing Symposium, Lincoln, Nebraska,
May 27–31, 1996, 1:243–245.
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Borak, J., P. Fisher, A. Strahler and A. Moody, 1995, Local-scale evaluation of a
technique for land-cover classification based on composited NDVI data.
Technical Papers 1995 ACSM/ASPRS Annual Convention, Charlotte, North
Carolina, February 27-March 2, 1995, 3:796–805.

Brodley, C. E. and M. A. Friedl, 1996. Improving automated land cover mapping by
identifying and eliminating mislabeled observations from training data.
Proceedings of the 1996 International Geoscience and Remote Sensing
Symposium, Lincoln, Nebraska, May 27–31, 1996, 2:1379–1381.

Brodley, C. E., M. A. Friedl and A. H. Strahler, 1996. New approaches to
classification in remote sensing using homogeneous and hybrid decision trees to
map land cover. Proceedings of the 1996 International Geoscience and Remote
Sensing Symposium, Lincoln, Nebraska, May 27–31, 1996, 1:532–534.

Carpenter, G. A., M. N. Gjaja, S. Gopal and C. E. Woodcock, 1996. ART neural
networks for remote sensing: Vegetation classification for Landsat TM and
terrain data. Proceedings of the 1996 International Geoscience and Remote
Sensing Symposium, Lincoln, Nebraska, May 27–31, 1:529–531.

Carpenter, G., M. Gjaja, S. Gopal, and C. Woodcock, 1997. ART networks in remote
sensing. IEEE Transactions on Geoscience and Remote Sensing 35(2):308–325.

Carpenter, G., S. Gopal, S. Martens, and C. E. Woodcock, 1999. Evaluation of
mixture estimation methods for vegetation mapping. Remote Sensing of the
Environment, in press.

Friedl, M. A., and C. E. Brodley, 1997, Decision tree classification of land cover
from remotely sensed data. Remote Sensing of Environment 61:399–409.

Friedl, M. A., C. E. Brodley, and A. H. Strahler, 1998. Maximizing land cover
classification accuracies produced by decision trees at continental to global scales.
IEEE Transactions on Geoscience and Remote Sensing 37(2):969–977.

Friedl, M., W. Woodcock, S. Gopal, D. Muchoney, A. Strahler and C. Barker-
Schaaf, 1999. A note on procedures for accuracy assessment in land cover maps
derived from AVHRR data. International Journal of Remote Sensing, in press.

Gopal, S. and M. Fischer, 1996. A comparison of three neural network classifiers for
remote sensing classification. Proceedings of the 1996 International Geoscience
and Remote Sensing Symposium, Lincoln, Nebraska, May 27–31, 1996, 1:87–
789.

Gopal, S. and M. M. Fischer, 1997. Fuzzy ARTMAP: A neural classification for
multispectral image classification. In Fischer, M. M. and A. Getis (eds.), Recent
Developments in Spatial Analysis: Spatial Statistics, Behavioural Modelling and
Computational Intelligence, pp. 306–35. Springer, Heidelberg.

Gopal, S. and C. E. Woodcock, 1998. Artificial neural networks for detecting conifer
mortality in Lake Tahoe. Proceedings of the First International Conference on
Geospatial Information in Agriculture and Forestry, ERIM Publications, Ann
Arbor, MI, 1998, 1:589–596.

Gopal, S., C. Woodcock and A. H. Strahler, 1996. Fuzzy ARTMAP classification of
global land cover from AVHRR data set. Proceedings of the 1996 International
Geoscience and Remote Sensing Symposium, Lincoln, Nebraska, May 27–31,
1996, 1:538–540.
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Gopal, S., Woodcock, C. and A. Strahler, 1999. Fuzzy ARTMAP classification of
global land cover from the 1 degree AVHRR data set. Remote Sensing of
Environment 67:23–243.

Hyman, A. H. and Barnsley, M. J, 1997. On the potential for land cover mapping
from multiple-view-angle (MVA) remotely sensed images. International Journal
of Remote Sensing 18(11):2471–2475.

Lambin, E. F and A. H. Strahler, 1994. Indicators of land-cover change for change-
vector analysis in multitemporal space at coarse spatial scales. International
Journal of Remote Sensing 15:2099–2119.

Lambin, E. F. and A. H. Strahler, 1994. Change-vector analysis: A tool to detect and
categorize land-cover change processes using high temporal-resolution satellite
data. Remote Sensing of Environment, 8:231–244.

Lambin, E. F and A. H. Strahler, 1994. Indicators of land-cover change for change-
vector analysis in multitemporal space at coarse spatial scales. International
Journal of Remote Sensing 15:2099–2119.

Lambin, E. F. and A. H. Strahler, 1994. Change-vector analysis: A tool to detect and
categorize land-cover change processes using high temporal-resolution satellite
data. Remote Sensing of Environment 8:231–244.

Lenney, M. P., C. E. Woodcock and H. Hamdi, 1996. The status of agricultural lands
in Egypt: The use of multitemporal NDVI features derived from Landsat TM.
Remote Sensing of Environment 56(1):8–xxx.

Moody, A., S. Gopal and A. H. Strahler, 1996. Sensitivity of neural networks to
subpixel land-cover mixtures in coarse-resolution satellite data. Remote Sensing
of Environment 58:329–343.

Moody, A. and A. H. Strahler, 1994. Characteristics of composited AVHRR data and
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Feb. 27-March 2, 1995, 3:684–693.
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2. Overview and Background Information

2.1 Experimental Objective

Land cover, and human and natural alteration of land cover, play a major role in
global-scale patterns of climate and biogeochemistry of the earth system. Although the
oceans are the major driving force for the earth’s physical climatology, the land surface
has considerable control on the planet’s biogeochemical cycles, which in turn significantly
influence the climate system through the radiative properties of greenhouse gases and
reactive species. Further, variations in topography, albedo, vegetation cover, and other
physical characteristics of the land surface generate variations of weather and climate by
forcing atmospheric circulation patterns that are driven by surface-atmosphere matter and
energy fluxes and the momentum of the earth’s rotation.

In this context, an important application of accurate global land-cover information is
the inference of parameters that influence biophysical processes and energy exchanges
between the atmosphere and the land surface as required by regional and global-scale
climate and ecosystem process models (Townshend et al., 1991). Examples of such
parameters for climate modeling include leaf area index (LAI), roughness length, surface
resistance to evapotranspiration, canopy greenness fraction, vegetation density, root
distribution, and fraction of photosynthetically-active radiation absorbed (FPAR) (Sellers,
1991a, 1991 b). These serve as input variables that control surface energy and mass
balances. Examples of ecosystem process model parameters for which land cover type
may serve as a surrogate include leaf photosynthetic capacity, canopy conductance, type
of photosynthetic system, and maximum photosynthetic rate (Running and Coughlan,
1988).

Most of these inferences are based on the structural character of the vegetation cover,
which is sensible to remote sensing. The objective of the Land Cover Parameter is to
identify a suite of land cover types amenable to such parameterization by exploiting the
spectral, temporal, spatial, and directional information content of MODIS data. The
objective of the Land-Cover Change Product is to detect and quantify the changes in land
covers and the natural and anthropomorphic processes that bring them about so that
global and regional models may be projected forward through changes in their driving
surface parameters.

2.2 Historical Perspective

2.2.1 Global-Scale Land Cover Data

Land-cover datasets currently used for parameterization of global climate models are
typically derived from a wide range of preexisting maps and atlases (Olson and Watts,
1982; Matthews, 1983; Wilson and Henderson-Sellers, 1985). This approach has several
limitations. First, the reference sources may themselves present a range of different dates,
spatial scales, and classification schemes. Confusion regarding the mapping of the
reference class units to the classification system and scale used in the land-surface dataset
may then lead to errors in the final product. For example, floristic and climatically-based



8 MOD12 ATBD Version 5.0—5/1/99

classifications, while not inherently compatible, may need to be combined and reclassified
to generate physiognomic cover types for a land-cover compilation (Townshend et al.,
1991). Second, the resulting datasets are fundamentally static, and can be assumed to
perpetuate errors existing in the sources from which they were derived. Third, some
datasets are maps of potential or climax vegetation, which is inferred from climatic
variables such as temperature and precipitation rather than of the true vegetation type.

Townshend et al. (1991) compared the areal statistics and spatial distributions of a
large number of land cover datasets. They documented considerable disagreement in the
relative percentages of basic land-cover types among these products. Moreover, even
when there was general agreement in the relative area covered by given vegetation types,
the spatial distribution of these units differed. While such datasets have obvious
limitations, they represent the state of the science for driving large scale process models,
and have been designed specifically for this purpose.

Many researchers have attempted to produce regional-scale land cover datasets using
coarse spatial-resolution, high temporal-frequency data from the AVHRR instrument
aboard the NOAA series of meteorological satellites. Almost without exception, these
efforts have involved the conversion of AVHRR bands 1 and 2 to normalized difference
vegetation index (NDVI) values. A registered time series of NDVI images is then
composited so that, for every pixel location, the maximum NDVI value encountered
throughout the compositing period is output. The compositing procedure tends to select
against measurements that are strongly influenced by atmospheric and aerosol scattering.
These measurements have reduced NDVI values due to differential scattering effects in
red and near-infrared bands. Cloud-contaminated measurements also produce lower NDVI
values, as clouds reflect strongly in both the red and near-infrared wave bands. The
compositing of NDVI values further reduces the variability associated with changing view
and illumination geometry (Holben, 1986), although measurements near the
forward-scattering direction tend to have slightly higher NDVI values and will thus be
preferentially selected. Compositing periods are chosen based on a trade-off between the
expected frequency of changes in vegetation and the minimum length of time necessary to
produce cloud-free images.

The NDVI generally quantifies the biophysical activity of the land surface and, as such,
does not provide land cover type directly. However, a time series of NDVI values can
separate different land cover types based on their phenology, or seasonal signals (e.g.
Lenney et al., 1996). Reed et al. (1994) and DeFries et al. (1995) have developed and
used multitemporal phenological metrics to derive land cover classifications from AVHRR
data. Lambin and Ehrlich (1996a, 1996b) have found that using a time series of the ratio
of surface temperature to NDVI provides a more stable classification than NDVI alone,
primarily by isolating interannual climatological variability.

Townshend et al. (1987) performed supervised classifications on composited NDVI
GAC (Global Area Coverage) data for South America. While they did not validate their
results with test data, they found that accuracy for the training sites improved substantially
with the increase in the number of images included in the time series. Koomanoff (1989)
used annually-integrated NDVI values to generate a global vegetation map using NOAA’s
Global Vegetation Index product (GVI).This work represents nine vegetation types and
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does not rely on the seasonality of the NDVI. Lloyd (1990) employed a binary classifier
based on summary indices derived from a time series of NDVI data. These
phytophenological variables included the date of the maximum photosynthetic activity, the
length of the growing season, and the mean daily NDVI value. The variables were fed
through a binary decision tree classifier that stratified pixels based first on the date of the
maximum NDVI, then the length of the growing season, and finally on the mean daily
NDVI.

A coarse-resolution global land surface parameter database was released on five
compact disks as an activity of the International Satellite Land Surface Climatology
Project (ISCLSCP) (Sellers et al. 1994). The database includes land cover classes,
absorbed fraction of photosynthetically-active radiation (FPAR), leaf area index (LAI),
roughness length, and canopy greenness fraction, along with data on global meteorology,
soils, and hydrology. The spatial scale of the database is 1 degree by 1 degree. Variables
such as FPAR, LAI and canopy greenness fraction are derived from 8-km composited
AVHRR NDVI data. The land cover classification is based on a spatial aggregation of the
8-km data to one degree followed by supervised classification of the temporal patterns in
NDVI (DeFries and Townshend, 1994).

Global land cover at a 1-degree resolution for 11 land cover classes has been achieved
by DeFries and Townshend (1994), Friedl and Brodley (1997), Friedl et al. (1999), and
Gopal et al. (1996). Other global maps and databases of land cover that have been used to
estimate and infer surface parameters include those of Matthews (1983), Olson (Olson and
Watts 1982; Olson et al., 1983) and Wilson and Hendersen-Sellers (1985). The 1-degree
AVHRR analyses of DeFries and Townshend (1994), Friedl and Brodley (1998), Friedl et
al. (1998) and Gopal et al. (1996) are based on the agreement of the maps of Matthews
(1983), Olson (Olson and Watts 1982; Olson et al., 1983) and Wilson and Hendersen-
Sellers (1985) maps to define training and test data. While the global land cover of
Loveland et al. (1995) is derived using an unsupervised approach and is currently being
validated, only the 1-degree and 8-km maps of DeFries and Townshend (1994) have been
based on site data for training and validation. In this instance, training and test site data
were based on delineating polygons on Landsat Multispectral Scanner (MSS) and
Thematic Mapper (TM) data and assigning them 11 categorical land cover labels.

Loveland et al. (1991, 1995) have produced land cover maps using the International
Geosphere-Biosphere Programme (IGBP) classification and Seasonal Land Cover Region
(SLCR) classification systems for North America. These maps were based on one year of
monthly composited AVHRR-LAC data to generate an unsupervised classification of land
cover types for the conterminous United States. The resulting clusters were further
stratified based on ancillary environmental data such as elevation and ecoregion. Class
labels were assigned based on the temporal curves of the clusters as well as a large number
of ancillary sources. While obviously limited by the quality of the composited NDVI data
and the accuracy of the ancillary sources, this dataset represents the most convincing large
area classification of AVHRR data at 1-km spatial resolution to date.

Loveland’s efforts were expanded under the auspices of the IGBP-DIS (International
Geosphere Biosphere Programme-Data and Information System), based on a global
database of 1-km AVHRR observations received during the period April 1992 through
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September 1993 (Belward and Loveland, 1995; Belward, 1996). These have been
assembled and 10-day composited at the EROS Data Center (EDC) (Eidenshink and
Faundeen, 1994). The 10-day composite AVHRR data were then monthly composited
using maximum NDVI to remove cloud and topographic effects and extreme off-nadir
pixels (Holben, 1986; Eidenshink and Faundeen, 1994), as well as scan angle dependence
of radiance (Duggin et al., 1982). The use of the monthly-composited AVHRR data may
be problematic (Holben, 1986). An analysis by Zhu and Yang (1996) determined that
compositing was biased towards selecting off-nadir pixels, especially in forward-scanning
views in winter months in the northern hemisphere. As with any large-area projection, they
also found that the effective mapping unit was geographically variable, in this case due to
the Goode’s homolosine projection system and resampling methods. Lack of sensor
calibration confuses the temporal trajectory of the multitemporal NDVI signal (Cihlar,
1996). Temporal smoothing or generalization might enhance the meaning of the temporal
signal (Van Dijk et al., 1987).

The global NDVI data provided a multitemporal database for land cover classification
using an unsupervised clustering and labeling approach. The global IGBP product has
recently undergone validation based on a global network of some 400 stratified samples
that were characterized using finer-resolution Landsat TM and SPOT-XS data following
an expert interpretation approach (Estes et al., in preparation).

2.2.2 Land Cover Classification Using Neural Networks

Neural networks have proven to be the most significant improvement in information
extraction in remote sensing in the last 15 years. The classification of remotely sensed data
using artificial neural networks began appearing in the remote sensing literature about ten
years ago. Since then, examples and applications have become increasingly common.
Remotely-sensed datasets processed by neural network-based classifiers have included
images acquired by the Landsat Multispectral Scanner (MSS) (Benediktsson et al.,, 1990;
Lee et al., 1990) Landsat TM (Yoshida and Omatu,1994) synthetic aperture radar (Hara
et al., 1994) SPOT HRV (Tzeng et al., 1994) AVHRR (Gopal et al., 1994) and aircraft
scanner data (Benediktsson et al., 1993). A number of these studies have also included
ancillary data e.g., topography (Carpenter et al., 1997) and texture (Bischoff et al., 1992).
Many studies have been directed toward recognition of land cover classes, which have
ranged from broad life-form categories (Hepner et al., 1990) to floristic classes (Fitzgerald
and Lees, 1994). Most use a supervised approach, but unsupervised classification using
self-organizing neural networks has also been attempted (Hara et al., 1994). In nearly all
cases, the neural network classifiers have proven superior to conventional classifiers, often
recording overall accuracy improvements in the range of 10-20 percent. As the number of
successful applications of neural network classification increases, it is increasingly clear
that neural network-based classification can produce more accurate results than
conventional approaches for remote sensing. The reasons include: (a) neural network
classifiers, which make no a priori assumptions about data distributions, are able to learn
nonlinear and discontinuous patterns in the distribution of classes; (b) neural networks can
readily accommodate collateral data such as textural information, slope, aspect and
elevation; and (c) neural networks are quite flexible and can be adapted to improve
performance for particular problems.
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The bulk of neural network classification work in remote sensing has used multilayer
feed-forward networks that are trained using the backpropagation algorithm based on a
recursive learning procedure with a gradient descent search. However, this training
procedure is sensitive to the choice of initial network parameters and to overfitting
(Fischer et al., 1997). The use of neural networks utilizing adaptive resonance theory
(ART) can overcome these problems. Networks organized on the ART principle are stable
as learning proceeds, while at the same time they are plastic enough to learn new patterns.
Our MODIS land cover classification uses a class of ART neural networks called fuzzy
ARTMAP (Carpenter et al., 1991a; 1991b), for classification, change detection and
mixture modeling. Fuzzy ARTMAP is a supervised learning system that synthesizes fuzzy
logic and adaptive resonance theory models. It has been recently applied to forest
vegetation mapping (Carpenter et al., 1997).

Recent studies highlight the utility of the fuzzy ARTMAP architecture and its
application to land cover classification. In one study, monthly composited AVHRR LAC
NDVI data for one year from West Africa at 1.1-km spatial resolution were classified into
six broad life-form classes using a fuzzy ARTMAP classifier (Gopal et al., 1994). Per-
class accuracies ranged between 66 and 98 percent, with an average accuracy of 83
percent, which compared favorably with a more typical feed-forward architecture trained
by backpropagation that achieved an average accuracy of only 61 percent. Another study
(Fischer et al., 1997) evaluated the performance of Multi-Layer Perceptron (MLP), Radial
Basis Function, and Fuzzy ARTMAP networks using a Landsat TM scene of the northern
section of the city of Vienna, Austria. Higher overall results (in terms of accuracy and
convergence time) were obtained using fuzzy ARTMAP followed by MLP (with weight
elimination). The classification accuracy on unseen test data was 98 percent using Fuzzy
ARTMAP compared with 90 percent using best MLP architecture.

2.2.3 Land Cover Classification Using Decision Trees

Decision tree classification techniques have been used successfully for a wide range of
classification problems, but only recently been tested in detail by the remote sensing
community (see for example Savafian and Landgrebe, 1991). These techniques have
substantial advantages for remote sensing classification problems because of their
flexibility, intuitive simplicity, and computational efficiency. As a consequence, decision
tree classification algorithms are gaining increased acceptance for land cover classification
problems, particularly at continental to global scales. For classification problems that
utilize data sets that are both well understood and well behaved, classification trees may be
defined solely on analyst expertise. This approach was proposed by Running et al. (1995)
to define a global classification strategy for vegetation based on threshold values of the
NDVI from AVHRR. In this framework, the actual values of the thresholds are defined a
priori based on a combination of ecological and remote sensing knowledge. However, this
procedure is difficult to implement in practice because the exact values of NDVI
thresholds vary substantially in both time and space, and are therefore difficult to specify
based on user knowledge alone.

More commonly, the classification structure defined by a decision tree is estimated
from training data using a statistical procedure. Recently, a variety of work has
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demonstrated that decision trees estimated in this type of supervised fashion provide an
accurate and efficient methodology for land cover classification problems in remote
sensing (Friedl and Brodley, 1997; Hansen et al., 1996; Swain and Hauska, 1977). For
example, DeFries et al. (1998) used decision trees to map land cover using the 8 km
AVHRR pathfinder data set with encouraging success. Similarly, Friedl et al. (1999)
recently demonstrated that decision trees provide a robust classification methodology for
land cover mapping problems at continental to global scales. Among the advantages of
decision trees that are particularly useful for remote sensing problems are their ability to
handle noisy and missing data (Quinlan, 1993; Savafian and Landgrebe, 1990). Further,
they require no assumptions regarding the distribution of input data and also provide an
intuitive classification structure.

2.2.4 Directional Information in Land Cover Classification

Although the application of spectral, temporal, and spatial information in classification
of remotely-sensed data has long been established in the literature, it is only recently that
the importance of directional information has been established (Hyman and Barnsley,
1997). In a study utilizing directional aircraft scanner imagery of an agricultural test site,
Barnsley et al. (1990, 1997) noted that by using a principal components transformation
and adding three view angles to two bands of spectral data, classification accuracies
increased by approximately 20 percent. Abuelgasim and Gopal (1994; Abuelgasim et al.,
1996) used a hybrid unsupervised-supervised neural network classifier to distinguish five
broad land cover classes in Minnesota subboreal forest from directional reflectances
imaged by NASA’s ASAS (Advanced Silicon Array Spectrometer) aircraft instrument
(Irons et al., 1991). Using seven directional images acquired in a single near-infrared band,
the authors obtained 89 percent accuracy using the hybrid classifier, as compared to 85
percent for a conventional feed-forward back-propagated neural net and 61 percent for a
maximum likelihood classifier.

2.2.5 Land-Cover Change

Global assessment of the changes in physical characteristics of the terrestrial surface
cover is a fundamental input for models of global climate and terrestrial hydrology. While
some changes in land cover, such as long-term changes in climate due to astronomical
causes, or shorter-term vegetation successions produced by geomorphic processes are
caused by natural processes, human activity increasingly modifies the land surface cover.
These modifications arise through direct actions, such as deforestation, agricultural
activities and urbanization, or indirectly, through human-induced climatic change. The
importance of mapping, quantifying, and monitoring changes in the physical characteristics
of land cover has been widely recognized in the scientific community as a key element in
the study of global change (e.g. IGBP, 1994; Henderson-Sellers and Pitman, 1992;
Nemani and Running, 1996, 1997).

Digital change detection is the process of determining and/or describing change based
on co-registered, multitemporal remotely sensed data. The two principal approaches to
change detection are 1) post-classification techniques, where independent classifications
are compared and 2) pre-classification or merged data techniques where simultaneous
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analysis of multitemporal data occurs (Malila, 1980; Muchoney and Haack, 1994). Post-
classification techniques have significant limitations. The comparison of land cover
classifications for different dates does not allow the detection of subtle changes within a
land cover class. Also, the change map product of two classifications exhibits accuracies
similar to the product of multiplying the accuracies of each individual classification (Stowe
et al., 1980). Merged data techniques include image differencing/ratioing, change vector
analysis, spectral-temporal (layered-temporal) change classification, regression techniques
and principal components analysis.

The Land-Cover Change Parameter employs the pre-classification or merged data
approach. Rather than analyzing isolated dates from two separate time periods, it is based
on a comparison of the temporal development curve, or time-trajectory, for successive
years of indicators. The indicators, derived from remotely sensed data, include such
variables as vegetation indexes, surface temperature, or spatial structure (Lambin and
Strahler, 1994a) and are provided by the 32-day composited database assembled for land
cover classification.

2.2.5.1 Change Vector Analysis

The primary change detection technique for the 1 km Land-Cover Change Parameter
is change vector analysis (Lambin and Strahler, 1994b). In this technique, each annual
multitemporal set of indicator values is taken as a point in multitemporal space, and points
from successive years are connected by a change vector, also in multitemporal space. The
direction of the change vector quantifies the change process, while the magnitude of the
change vector quantifies the amount of change (Lambin and Strahler, 1994b). Change
vectors applied to different indicators reveal different change processes or different
aspects of change processes (Lambin and Strahler, 1994a).

The application of change vectors in remote sensing was first described by Malila
(1980) and by Colwell and Weber (1981), although the change vectors in these studies
were multispectral rather than multitemporal. Michalek et al. (1993) applied multispectral
change vectors to the monitoring of coastal environments. Change vector analysis in the
temporal domain lends itself to AVHRR applications, since this instrument provides data
with a high temporal frequency. Prior studies of change using AVHRR have used annual
integrated NDVI, or isolated dates of NDVI or untransformed data. Examples are the
studies of change in the Sahel of Tucker et al. (1986, 1991), Hellden and Eklundh (1988)
and Hellden (1991); or studies of large-scale tropical deforestation by Tucker et al.
(1984), Nelson and Holben (1986), Woodwell et al. (1987), and Malingreau et al. (1989).
While the procedures used in these studies are appropriate to detect abrupt land-cover
changes such as forest clearing, biomass burning, or the impact of a severe drought, the
detection of more subtle forms of change, such as those associated with climate change or
with slow rates of land degradation, requires a more sophisticated approach such as
change vector analysis.

Change vector analysis has been explored in several studies that have been partially
supported by, or coordinated with, the MODIS 1-km land cover effort. These have
focused on multitemporal datasets of Africa at LAC and GAC resolutions made available
by J.-P. Malingreau (Joint Research Center, Ispra, Italy). In a study of two years of LAC
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NDVI data in the Sahel region, change vectors were calculated using monthly maximum-
value composites, then subjected to principal components analysis (Lambin and Strahler,
1994b). The components were related to: 1) the timing of the start of the growing season;
2) vegetation scenescence rates in savannas during the onset of the dry season; 3)
vegetation scenescence rates in herbaceous covers during the onset of the dry season; and
4) differences produced by haze and cloud contamination (Lambin and Strahler, 1994a).
The analysis clearly demonstrated the ability of the technique to detect subtle variations in
regional phenology, thus providing a basis for separating natural temporal variability from
more permanent changes induced by human activity.

This analysis was extended to compare maximum-value composites of NDVI with
maximum-value composites of surface temperature and spatial structure (Lambin and
Strahler, 1994a). Spatial structure was quantified by calculating the standard deviation of
NDVI values within an adaptive three-by-three pixel window. In the adaptive window
procedure, the standard deviation is computed for each of nine three-by-three windows to
which a pixel belongs, and the minimum value is selected (Woodcock and Ryherd, 1989).
In this way, the texture measure is not inflated artificially by the contrast between land
cover boundaries.

The analysis showed these indicators to have a low degree of redundancy. NDVI
change vectors are driven by seasonal changes in rates of vegetation activity; surface
temperature change vectors are driven on a shorter time scale by rainfall events, especially
in the drier environments; and NDVI texture displays a seasonal variability that must be
taken into account when assessing long-term change. Later studies of change in NDVI
texture in the same region confirm the diagnostic nature of the temporal pattern of spatial
heterogeneity (Lambin, 1996).

The change vector technique is the most mature of the available techniques suited to
the 1-km Land-Cover Change Product, and thus will be the basis for initial 1-km Land-
Cover Change Product provided early in the postlaunch period. Other approaches will be
explored simultaneously, especially at our intensive study sites. These techniques are
explored in the following section.

2.2.5.2 Neural Network and Transformation-Based Change Detection

In addition to change vector analysis, a number of techniques comprising artificial
neural networks, principal components analysis and Gramm-Schmidt orthogonalization
change detection techniques are being evaluated. These techniques are also used as
benchmarks for evaluating the performance of the change vector technique.

Artificial neural networks have only recently been applied to change detection. Gopal
et al. (1996) evaluated the use of the fuzzy ARTMAP neural network for land cover
classification and change detection at global scales using multitemporal AVHRR NDVI.
These techniques were also applied locally in a supervised approach to detect changes in
forest cover attributes over time (Gopal and Woodcock, 1996). A change detection study
that assessed the environmental impact of the Gulf War forms the basis for the proposed
approach. An ARTMAP network was modified to construct a system to derive a set of
category representations that could be successfully employed to detect changes between
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known land cover classes, establish new category representations for unknown land cover
classes, and provide quantitative measures of the significance of changes in terms of
category likelihood or intensity. In this study, fuzzy ARTMAP recognized six land cover
classes for a period before the Gulf War. The trained network was then used to detect
changes that occurred as a direct result of the Gulf War. The network successfully
detected (1) areas of no change: land cover remained the same after the war; (1) between-
class change: categorical change into one of the existing land cover classes (that the
network already “learned”); and (3) new categories: The network recognized nine new
categories that have directly resulted due to the impact of the Gulf War. The adaptive
fuzzy network proved more successful than the conventional k-means multidate
classification in accurately predicting land cover change. It also offered a more
comprehensive and unified treatment of the varieties of change encountered by
simultaneously providing categorical and quantitative measures of change in the form of
adaptive fuzzy membership values.

The artificial neural network used in a supervised approach to develop the Land Cover
Parameter, by its nature, also includes a change detection component. As new data are
presented to the Fuzzy ARTMAP neural network, the input either matches an existing
category, or a new category must be created. If a new data presentation does not match an
existing category then it will be necessary to determine whether the new data represent a
fundamentally new condition (change) or whether the vigilance parameter needs to be
relaxed so that an existing category (presumably a pixels previous category) can now
accommodate the new input. This feature is especially useful for flagging change in the
training process, when training data may be from an earlier period.

Another feature of neural network classifiers is that probability of membership by class
can be evaluated on a pixel-by-pixel basis to track the probability that a specific pixel
belongs to a certain class. When a specified threshold has been crossed, that pixel has
moved into a new class and a categorical change has occurred. For the 1-km Land-Cover
Change Parameter, a direct supervised approach to change detection using neural
networks (Gopal and Woodcock, 1996) will also be investigated for targeting specific
types of change in specific areas.

Principal components analysis, or the related Karhunen-Loeve (K-L) transformation
(Duvernoy and Leger, 1980), is a multivariate statistical technique in which data axes are
rotated into principal axes, or components, that maximize data variance. The original data
are then transformed to the new principal axes, or components. In this manner, correlated
data sets can be represented by a smaller number of axes, while maintaining most of the
variation of the original data. PCA has been widely applied to detect, isolate and
determine the nature of changes in the remote sensing signal over time (Byrne et al., 1980;
Muchoney and Haack, 1994). For the 1-km Land-Cover Change Parameter, PCA will
serve two functions. First, it will be used as part of the QA procedure, as a means of
evaluating the nature of variance in the time series for anomalies and artifacts due to
sensor characteristics and data processing. Second, PCA will be used at the intensive
studies sites for land cover change to evaluate the performance of the change vector and
neural network techniques.
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The Gramm-Schmidt orthogonalization change detection technique (Collins and
Woodcock, 1994) will be employed in the QA process to evaluate the global change
detection algorithm (change vector). It may also be used to discriminate specific types of
change or region-specific change, and to describe the nature of change as determined by
change vector analysis. Gramm-Schmidt is a more physically-based, less-empirical
approach to rotational transformation than PCA. Gramm-Schmidt change detection is a
modification of the technique that was initially used to derive coefficients of the tasseled-
cap transformation for single-date imagery (Kauth and Thomas, 1976) to accommodate
multitemporal data. In this case, the coordinate scores of rotated multitemporal pixel
vectors directly represent inter-date change.

2.3 Land Cover Units

The primary objective of the land cover parameter is to facilitate the inference of
biophysical information from land cover for use in regional and global modeling studies.
Thus, the specific classification units of land cover need not only to be discernible with
high accuracy from remotely-sensed and ancillary data, but also need to be directly related
to physical characteristics of the surface and primarily to surface vegetation. A set of 17
such global land cover classes has been developed by the IGBP-DIS in conjunction with
the IGBP Core Projects specifically for this purpose (Belward, 1996). They were applied
to a classification of the global 1-km composited AVHRR LAC NDVI database assembled
at EROS Data Center (Belward and Loveland 1995, Belward, 1996). Since the IGBP
system of units was developed for a global land cover product at a similar 1 km resolution
for a similar purpose (biophysical parameterization for modeling), the IGBP classification
will also be used for the MODIS Land Cover Product.

Table 1 provides a list of the IGBP land cover units with accompanying descriptions.
The list includes eleven classes of natural vegetation, three classes of developed and
mosaic lands, and three classes of nonvegetated lands. The natural vegetation units
distinguish evergreen and deciduous, broadleaf and needleleaf forests, where one of each
pair of attributes dominates; mixed forests, where mixtures occur; closed shrublands and
open shrublands; savannas and woody savannas; grasslands; and permanent wetlands of
large areal extent. The three classes of developed and mosaic lands distinguish among
croplands, urban and built-up lands, and cropland/natural vegetation mosaics. Classes of
nonvegetated land cover units include snow and ice; barren land; and water bodies.

Note that the IGBP classes can be re-labeled (“cross-walked”) to provide compatibility
with current and future systems used by the modeling community. Table 2 provides an
example in which the IGBP classes are translated to three other schemes. SiB2 (Sellers, et.
al, 1996) is a surface-atmosphere interaction model for use in GCMs; the classification of
Running and Nemani (Nemani and Running, 1996; Running et. al., 1994a; Running et al.,
1995) is intended primarily for parameterization of global carbon and nutrient cycle
models; and Myneni’s classification is used in radiative transfer modeling for the MODIS
and MISR LAI/FPAR products. For nearly all classes in these schemes, there is a direct
mapping of one or more IGBP classes to their equivalents. A problem arises where some
classes have no equivalents. For example, wetlands and urbanized areas do not appear in
these three schemes, presumably because they are not recognized in the models receiving
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the land cover type input. However, these classes may be quite important for trace gas
emission models, for example. The IGBP strategy was to recognize those classes that
would be most useful across all the modeling disciplines of the IGBP, in effect requesting
modelers to consider all relevant classes with significant areal extent on the earth’s land
surface.

Table 1. IGBP Land Cover Units
Natural Vegetation

Evergreen Needleleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Almost all trees remain green all year. Canopy is never
without green foliage.

Evergreen Broadleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Almost all trees and shrubs remain green year round.
Canopy is never without green foliage.

Deciduous Needleleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Consists of seasonal needleleaf tree communities with an
annual cycle of leaf-on and leaf-off periods.

Deciduous Broadleaf
Forests

Lands dominated by woody vegetation with a percent cover >60% and height
exceeding 2 meters. Consists of broadleaf tree communities with an annual cycle
of leaf-on and leaf-off periods.

Mixed Forests Lands dominated by trees with a percent cover >60% and height exceeding 2
meters. Consists of tree communities with interspersed mixtures or mosaics of
the other four forest types. None of the forest types exceeds 60% of landscape.

Closed Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy
cover >60%. The shrub foliage can be either evergreen or deciduous.

Open Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy
cover between 10-60%. The shrub foliage can be either evergreen or deciduous.

Woody Savannas Lands with herbaceous and other understory systems, and with forest canopy
cover between 30-60%. The forest cover height exceeds 2 meters.

Savannas Lands with herbaceous and other understory systems, and with forest canopy
cover between 10-30%. The forest cover height exceeds 2 meters.

Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.
Permanent
Wetlands

Lands with a permanent mixture of water and herbaceous or woody vegetation.
The vegetation can be present in either salt, brackish, or fresh water.

Developed and Mosaic Lands
Croplands Lands covered with temporary crops followed by harvest and a bare soil period

(e.g., single and multiple cropping systems). Note that perennial woody crops
will be classified as the appropriate forest or shrub land cover type.

Urban and Built-Up
Lands

Land covered by buildings and other man-made structures.

Cropland/Natural
Vegetation Mosaics

Lands with a mosaic of croplands, forests, shrubland, and grasslands in which
no one component comprises more than 60% of the landscape.

Non-Vegetated Lands
Snow and Ice Lands under snow/ice cover throughout the year.
Barren Lands with exposed soil, sand, rocks, or snow and never has more than 10%

vegetated cover during any time of the year.
Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water

bodies.
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Table 2. Classification Comparisons
Classification

IGBP SiB2 Biome Running & Nemani Myneni
Objective

General Model
Parameterization

Surface Interactions in
GCMs

Carbon and Nutrient
Cycling Models

Radiative Transfer for
LAI, FPAR

Class Breakdown
Evergreen Needleleaf
Forests

Needleleaf-Evergreen
Trees (4)

Evergreen
Needleleaf

Needle Forests

Deciduous Needleleaf
Forests

Needleleaf-Deciduous
Trees (5)

Deciduous Needleleaf Needle Forests

Evergreen Broadleaf
Forests

Broadleaf-Evergreen
Trees (1)

Evergreen
Broadleaf

Leaf Forests

Deciduous Broadleaf
Forests

Broadleaf-Deciduous
Trees (2)

Deciduous
Broadleaf

Leaf Forests

Mixed Forests Broadleaf and
Needleleaf Trees (3)

Woody Savannas C-4 Grassland (6) Savannas Savanna
Savannas C-4 Grassland (6) Savannas Savanna
Grasslands C-4 Grassland (6) Grasses Grasses/Cereal Crops
Closed Shrublands Dwarf Trees and

Shrubs (8)
Shrublands

Open Shrublands Shrubs with Bare Soil
(7)

Shrublands

Croplands Agriculture or C-3
Grassland (9)

Broadleaf Crops

Cropland/Natural
Vegetation Mosaics
Permanent Wetlands
Urban and Built-Up
Lands

2.3.1 Biophysical Parameterization

Taken together, the sets of natural vegetation and developed lands units can be used to
differentiate several fundamental distinctions among cover types that are essential for
ecological process modeling. One of these is annual vs. perennial habit, distinguished by
whether or not the vegetation retains perennial or annual aboveground biomass. This
attribute separates vegetation with permanent respiring biomass (forests and woody-
stemmed shrubs) from annual crops and grasses that go through non-growing season
periods as seeds or below-ground structures only. The annual-perennial distinction allows
inference of several critical physiological attributes of plants. For example, in a global
synthesis of plant gas exchange rates, Korner (1993) found on average that annual plants
maintained a 50 percent higher leaf photosynthetic capacity than perennial plants. Biomass
permanence, as it relates to plant height, also is the major vegetation determinant of the
surface roughness length parameter that climate models require for energy and momentum
transfer equations.

Another fundamental attribute that is distinguishable using this set of units is leaf
longevity, which distinguishes between evergreen and deciduous plant covers. This
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attribute is a critical variable in carbon cycle dynamics of vegetation, and is important for
seasonal albedo and energy transfer characteristics of the land surface. The leaf longevity
class defines whether a plant must completely re-grow its entire canopy each year, or
merely a portion of it, with direct consequences to ecosystem carbon partitioning, leaf
litterfall dynamics and soil carbon pools. Reich et al. (1992) suggest that canopy
conductance and maximum photosynthetic rate are inversely proportional to leaf
longevity. Hence, certain global attributes of canopy gas exchange capacity may be
inferred based on a leaf longevity criterion.

A third vegetation attribute recognizable within the IGBP units is the leaf type or
shape of the dominant vegetation cover. Three leaf shapes are distinguished among the
various categories: needleleaf, broadleaf, and graminoid (grasses). This attribute also
correlates well with key ecological parameters for biogeochemical modeling. Running and
Hunt (1993) defined maximum leaf area index values of 10, 6 and 3, and maximum canopy
conductance values of 1.6, 2.5, and 5.0 mm/sec, for needle-leaved trees, broad-leaved
trees, and grass covers, respectively.

Still other intrinsic biophysical parameters may be inferred from these units. For
example, Dorman and Sellers (1989) assigned a series of optical properties, physiological
properties and physical parameters to a set of vegetation classes, based on those of
Matthews (1983) and Kuchler (1983), specifically for global application to the Simple
Biosphere Model of land surface-atmosphere interaction (Sellers et al., 1986). In a
somewhat different application, Sellers et al. (1994) devised an algorithm for determining
global FPAR, LAI, and canopy greenness fraction from monthly composited NDVI at 1-
degree resolution. Although the method is based on NDVI, their algorithm stratifies
NDVI-FPAR-LAI relationships by vegetation cover types, using broad structural classes
similar to those of the IGBP classification. Note that FPAR and LAI will be produced
from MODIS using separate biogeophysical algorithms in MODIS Product MOD15.

2.3.2 At-Launch Provisional Land Cover Parameter

In order to provide land cover information for other MODIS algorithms that require
land cover as an input, an at-launch provisional land cover parameter has been provided by
MODIS Team Member John Townshend of the University of Maryland. This provisional
parameter will be used by the Land Team in preparation of several at-launch land
products, including LAI/FPAR (MOD15), annual net primary productivity and
photosynthesis parameter (MOD16, MOD17), snow cover (MOD10), and BRDF/Albedo
(MOD43), to infer various types of biophysical information as required for their
investigations. The University of Maryland has selected two at-launch land cover
products: that of the IGBP global land cover database described above (Belward and
Loveland, 1995; Belward, 1996), and a modified IGBP classification that was developed
by the University of Maryland using supervised decision tree classification of the 1 km
1992-93 USGS dataset. The IGBP dataset is currently undergoing intensive global
validation (Estes et al., in preparation).
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2.4 Spatial Resolution

The Land Cover Product will be produced at 1-km spatial resolution. This scale is the
finest that is practically achievable with the MODIS instrument. Although the MODIS
land bands are imaged at 250- and 500-m spatial resolution, these are nominal values for
nadir pixels. At the edge of the MODIS swath, pixels grow by a factor of 2 in the
along-track direction and by a factor of 5 in the across-track direction. Moreover, there
will be geolocation error in computing the center of each pixel that is produced by
uncertainties in the knowledge of the location of the spacecraft and its orientation. The
best current estimates of pointing error are +85 m along-track and +153 m across-track
(MODIS geolocation workshop, 8/8/96, GSFC). These are three standard-deviation (3
sigma) values projected to nadir, and will increase with look angle in a fashion similar to
that of pixel size.

Geolocation errors, together with pixel size growth, give an effective instantaneous
field of view (EIFOV) of 1087 m in the along-track direction and 1591 m in the across-
track direction for the composited sequence of measurements input to the 32-day land
cover database. This EIFOV does not include optical blurring or scatter within the
instrument, and thus is a conservative estimate of effective spatial resolution. Given pixel
size effects and geolocation uncertainties, it seems reasonable to use a grid cell size of
1-km. Finer resolution information would be redundant and incur significant costs to
produce and store.

The 1-km spatial resolution is well-suited to the needs of the global and regional
modeling community. In a recent report, the IGBP-DIS Land Cover Working Group
noted (IGBP, 1992):

“There is an emerging view regarding the appropriate scale for analyzing land
cover and land cover conversion. The suitability of 4-8 km GAC data for
delineating broad land cover types and phenology has been demonstrated
(Malingreau, 1986; Malingreau and Tucker, 1988). The utility of 8-15 km data for
land cover classification and phenology has also been shown by a number of
authors (e.g., Justice et al., 1985, and Tucker et al., 1985), but it is too coarse for
monitoring land cover conversion and reliable detection of land transformation
requires resolutions of 1 km or finer (Townshend and Justice, 1988). This
observation is supported by detailed analyses of tropical deforestation, which
suggests that even 1 km data might be too coarse for quantifying the area and rate
of deforestation in some regions (C. J. Tucker, personal comm.), although a 1 km
data set would assist stratified sampling.”

These considerations led directly to the development of the IGBP 1-km Land Cover
Database described above. In addition, 1-km scale input is required for other 1-km
MODIS land products as noted in section 2.3.2.

2.4.1 Aggregation and Scaling

The effect of scaling on land cover proportions has been explored in the research
literature in recent years. Several studies have established that changing the spatial
resolution of land cover maps has important effects on the proportion of a landscape



MOD12 ATBD Version 5.0—5/1/99

occupied by a particular land cover type (Henderson-Sellers et al., 1985; Turner et al.,
1989; Moody and Woodcock, 1994; 1995 a and b). In general, the proportions of smaller,
more fragmented cover types decrease with aggregation, while those of the larger classes
increase. Similar effects were noted by Townshend and Justice (1988), who observed
large changes in the proportions of test site images falling within specific NDVI ranges as
scenes were progressively degraded to coarser resolutions. These observations conform
with more theoretical results obtained by Jupp et al. (1988, 1989) and Woodcock and
Strahler (1987) on scaling, resolution, and spatial pattern.

The results obtained by these researchers suggest that where different covers
differently influence biophysical relationships (e.g., NDVI-FPAR relationships, Sellers et
al., 1994), the aggregated behavior of an areal unit will be different from that of a single
cover type that dominates it. This effect has been documented in surface energy balance
modeling by Henderson-Sellers and Pitman (1992).

There are two further implications of the scaling behavior of land covers for the
MODIS product. First, if 1-km land cover classes are to be aggregated to a coarser grid,
the product should provide a vector of proportions by classes within coarse grid cells,
rather than a label derived from a single dominant class. In this way, users will have
sufficient information to treat the area as heterogeneous if desired. This approach will be
used in the Land Cover 1/4-degree Climate Modeler’s Grid (CMG) Product.

A second implication lies at subpixel scales. Many studies of fine resolution satellite
imagery have established the fact that the spatial pattern structure of real landscapes is
often finer than 1 km in linear dimension (e.g., Townshend and Justice, 1988; Townshend
et al., 1992). These findings suggest that even at 1-km resolution most pixels are mixed. If
pixels are mixed and the proportions matter, then it is important to document the way that
proportions change with pixel size within ecoregions so that subpixel effects may be
accommodated in coarser-scale aggregations (Moody and Woodcock, 1995a). Such
documentation will require validation studies at test sites (discussed in a later section).

Several approaches to correction of cover-type proportions have been explored in the
literature. These have ranged from simple regression methods in which fine-resolution
proportions are associated with coarse-resolution spectral variables (Zhu, 1996) to
regression-tree models predicting coarse-scale proportions from a suite of fine-scale
spatial pattern quantifiers using regression trees (Moody and Woodcock, 1995a, 1995b).
In a recent study examining the determination of tropical forest area from AVHRR LAC
data, Mayaux and Lambin (1995) provide a two-step procedure in which the Matheron
index, which measures the length of boundary per unit area for a class, estimates the slope
and intercept for a regression linking fine- and coarse-resolution proportions. They
recently extended their work to inverse calibration of cover proportions using several
measures of spatial textures, including a simulation of the MODIS scenario of 1-km
classification with a standard deviation texture measure derived from a 250-m band
(Mayoux and Lambin, 1995). They showed that the 250-m texture was the most effective
of the measures available, reducing residuals in observed versus modeled proportions to
less than 9 percent.

These studies suggest that areal proportion estimation must be done carefully with
appropriate use of fine-scale information, such as 250-m spatial texture. Moreover,
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proportion estimation is dependent on the spectral characteristics of the classes as well as
their spatial structures. For the Land Cover Product, we will provide subpixel proportion
estimation information as an ancillary dataset for those regions in which we have sufficient
information to compute it. In the post-launch era, we may be able to provide a specific
global product with this information.

2.5 Instrument Characteristics

Several problems have been consistently encountered in attempting to process
AVHRR data for large-area land-cover discrimination. Although the red and near-infrared
channels capture the primary variance in the vegetation signal, other spectral bands that
can provide important information in reflective wavelengths are missing. Furthermore, the
AVHRR bands are broad and include some atmospheric absorption features that unduly
influence the ground signal. Despite the use of the maximum value compositing procedure
to screen for clouds, many cloud-covered pixels are still included in composited images.
This leads to a misrepresentation of the time trajectory and can cause faulty classification
results.

Composited images can also include large numbers of poorly-registered off-nadir
pixels, a circumstance that results in a blurred image appearance, reduced image variance,
and variable within-scene spatial resolution. Part of the reason for this lies in the
instrument’s conical scan mirror, which provides rotated and overlapping instantaneous
fields of view at the edge of the scan. Other limitations to the processing of AVHRR data
include poor spectral and radiometric calibration, poor pointing knowledge, and
difficulties in providing accompanying atmospheric correction.

The design of the MODIS instrument alleviates many of these problems. Seven of the
MODIS bands in the reflective region have been selected expressly for land applications
based on experience with Landsat Thematic Mapper and AVHRR. These bands are
positioned to sample the solar spectral curve in wavelength regions that provide specific
information about the land surface, while their bandwidths are chosen so as to maximize
radiometric precision and avoid atmospheric absorption. This will lead to the production
of vegetation indices that are more meaningful and more resistant to atmospheric effects
than those produced from AVHRR data, and will also provide for greater utility and
interpretability of the individual bands. All of the reflective bands and several combinations
of these bands will be potentially useful for discriminating land cover units and monitoring
change (Townshend et al., 1991). In addition, thermal channels were found to be also
prove to be useful in characterizing and discriminating land cover types.

In contrast to AVHRR, MODIS possesses an extensive on-board capability for
radiometric and spectral calibration. Calibration subsystems include for shorter
wavelengths the spectroradiometric calibration assembly (SRCA), the solar diffuser and
solar diffuser stability monitor, and, at longer wavelengths, a blackbody for thermal band
calibration. The instrument will also view dark, deep space as part of its normal scan, and
at certain times will image both deep space and the moon as part of the calibration
procedure. The inclusion of specific bands for atmospheric sensing on the MODIS
instrument provides for dynamic atmospheric correction and allows the estimation of
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surface directional reflectances in the MODIS land bands (King et al., 1991) (MOD09;
2015).

The use of surface reflectances instead of top-of-the-atmosphere radiances allows a
strategy for assembling multidate imagery without relying on specific transforms, such as
NDVI, that suppress atmospheric noise. MODIS bands also allow the application of
multiple algorithms for the detection of different types of clouds so that cloud-covered
pixels may be identified reliably (MOD06). Moreover, in the case of high, thin cirrus
clouds, data can be corrected for cloud effects. With atmospherically-corrected and
cloud-screened data, measurements can be composited through the fitting of semiempirical
BRDF functions (MOD43), allowing calculation of the best-fit nadir reflectance in each of
the seven land bands within a 16-day period. In this way, data are obtained that are free of
clouds, atmospheric contamination, and angular view and illumination effects.

Rectification has posed particular difficulties for AVHRR processing in producing
composited images, analyzing time trajectories of land surface data, and comparing data
from multiple time periods to assess change. These problems should be significantly
reduced with the in-flight navigation capabilities of MODIS. Geolocation error estimates,
discussed in more detail in section 2.5, combined with the growth of pixel size with scan
angle, will provide an effective pixel size close to 1-km using the 500-m and 250-m land
bands as inputs. Although AVHRR LAC data are commonly composited to 1-km spatial
resolution, the data are quite redundant at that scale. For example, normal geolocation
error for EDC processing of LAC data is on the order of 2-3 pixels (T. Loveland, personal
communication). This error smooths the data greatly and is especially noticeable at abrupt
contrast boundaries, such as coastlines. MODIS will thus provide a very significant
improvement to 1-km data quality.

3. Algorithm Description

3.1 Overall Algorithm Structure

3.1.1 Practical Description of Algorithm

3.1.1.1 Land Cover Parameter

Figure 1 provides an overview of the Land Cover algorithm logic. In brief, reflected
and emitted radiation, as measured remotely through time and over space, are combined
with ancillary data to provide a database for distinguishing land covers that includes
spectral, directional, spatial, temporal, and collateral information. This database is
processed using decision tree and neural net classification algorithms.

3.1.1.1.1 Database Assembly and Compositing

In the temporal dimension, remotely sensed data are not retained in full temporal
resolution. Rather, the volume of measurements is reduced to a set of summary
measurements for each cell in a 1-km grid for a 32-day period (MOD12M—an interim
product). Studies using AVHRR data acquired over large regions have concluded that a
period of at least 30 days is required to assemble a dataset that is largely uninfluenced by
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cloud cover (e.g., Lambin and Strahler, 1994a, 1994b; Moody and Strahler, 1994). The
32-day cycle used here is keyed to the platform orbit, which repeats in a 16-day cycle and
8-day half cycle.

 Remotely sensed inputs to the 32-day database include:

• Land/Water Flag
Locations permanently covered by moderate or deep water are not investigated by
the MODIS Land Cover Classification algorithm. Each 1-km cell in the 32-day
database includes a land/water flag retrieved from the EOS land/water mask.

• Nadir BRDF-Adjusted Reflectances (NBARs).
The MODIS BRDF/Albedo product (MOD43B4) provides nadir BRDF-adjusted
reflectances (NBARs) to the MODIS Land Cover algorithm in all seven land bands
at 1-km resolution. Each observation in this global dataset is the modeled
reflectance that would be observed for a given ground location at nadir with the
median solar illumination angle for the overpasses over a 16-day period. Thus, two
NBARs are available over a 32-day period.

• Texture Channel
The MODLAND Aggregation Product (MODAGTEX) includes a spatial texture
layer. Spatial texture is measured as the ratio of standard deviation to mean of the
250-m surface reflectances falling within each 1-km grid cell during a 16-day
period. Studies have demonstrated the utility of this spatial measure in
classification of land covers (e.g., Borak and Strahler, 1996). Since texture
measures across spectral bands are typically strongly correlated, only the texture
for MODIS Band 1 (red, 250-m nominal resolution) is used. This is a daily
product, thus as many as 32 texture measures can be available over a 32-day
period.

• Vegetation Index
An Enhanced Vegetation Index (EVI) is provided by the MODIS Level 3
Vegetation Index Product (MOD13). The spatial resolution of this input is 1km
and its temporal resolution is 16 days. Thus, two EVIs are available over a 32-day
period.

• Directional Information
The MODIS BRDF/Albedo Product (MOD43B1) includes parameter sets
describing the fits of semiempirical BRDF models to surface reflectances obtained
from MODIS and MISR in the seven land bands. For input to the Land Cover
Product, parameters describing the BRDF shape are extracted from this product
along with the relevant quality control information. Relationships between BRDF
and land cover are currently under investigation using AVHRR data (see MODIS
BRDF/Albedo Product ATBD for details). Generally, the value of using BRDF
information in land cover classification derives from the fact that relatively coarse
multidirectional class signature boundaries fall across the boundaries of spectral
classes. This allows identification of subtleties that may not be apparent in spectral
data alone.
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• Snow/Ice Cover
The MODIS Level 3 Snow Cover Product (MOD10A) provides 8-day maps of
snow cover at a 500m resolution. Thus 4 snow products are available over a 32
day period. because of the spatial inconsistency with the other 1-km products, the
snow flag accompanying the reflectance data QA will be used as a surrogate at-
launch.

• Land Surface Temperature
The MODIS Land Surface Temperature Product (MOD11) provides an 8-day
product of daylight land surface temperature (LST). Thus 4 LSTs are available
over a 32-day period. Temperature data are nominally at 1-km resolution.

 The accumulation procedure carried out in the production of 32-day MOD12M
involves examining the overall quality associated with each set of measurements in order
to select the best measurements available for the 32-day period. The best data are
generally those produced with the highest degree of scientific validity according to the
MODIS Science Team members responsible for generating the input datasets, i.e., values
with optimal quality flags. Often, the degree of validity is related to cloud cover, but it also
takes other elements of the production stream into account. Inputs that contain no valid
information over a 32-day period are treated as missing data. Scientifically useful
observations from input products that are produced at shorter time steps than 32 days are
aggregated to a 32-day time step in the following ways. The two maximum Land surface
temperatures are retained. Snow cover is accumulated from the four 8-day products
produced over the 32-day period. The best quality 16-day spectral NBARs and directional
reflectance information from MOD43B are retained for each cell. Both 16-day EVIs are
retained.

3.1.1.1.2 Data Reduction

The classification algorithm operates on a sequence of twelve 32-day MOD12M
databases along with an EOS-wide 1-km topographic database to generate seasonal land
cover labels. Data reduction has been used extensively in remote sensing and classification
problems. Probably the most common approach is to employ some sort of linear
transformation on the original dataset to produce a smaller set of factors or components
(Kauth and Thomas, 1976; Jackson, 1983; Ingebritsen and Lyon, 1985). Most of the
original variance is retained with a significant reduction in data volume.

The decision tree classifier (DTC) used as the MODIS at-launch classification
algorithm provides an approach to data reduction that is well known in the pattern
recognition literature, but has appeared relatively recently in the remote sensing literature
(Michaelsen et al., 1994, Hansen et al., 1996, Borak and Strahler, 1999. The DTC
operates in a supervised mode, and thus requires data from training sites. The algorithm
employs tree-structured rules that recursively partition the input dataset into increasingly
homogeneous subsets based on a splitting rule (Breiman et al., 1984). These subsets are
represented as nodes in the tree structure. The top node root) consists of the entire input
dataset. Nodes at the bottom of the tree (leaves) are the output cover classes. The
hierarchical nature of the classifier thus separates important discriminatory information
near the top of the tree from redundant information near the bottom of the tree. Another
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method of feature reduction is the use of simple summary variables, such as maximum and
minimum values, max-min differences, annually integrated values, etc. These methods
have been explored by Lloyd (1990), and more recently, by DeFries et al., 1995. The at-
launch data reduction algorithm requires hands-on preparation at the Scientific Computing
Facility, and results will be sent to the DAAC for incorporation into the production
environment on a quarterly basis.

3.1.1.1.3 Classification

In the classifier stage, a sequence of 32-day databases is input to the classifier along
with the EOSDIS 1-km topographic database (MOD03). In the post-launch period, the
32-day sequence will involve two years of acquisitions. During the first two years of
acquisitions, the sequence will necessarily be shorter. The 32-day databases and ancillary
data are then processed by a neural network classifier. Recent applications of neural
networks in classification of remotely sensed data were discussed in section 2.2.2. The
candidate neural network and decision tree architectures are described in detail in the
following section.

For greater processing efficiency and classification accuracy, processing will proceed
by continents. Note that the full spectral and temporal resolution of the land cover
database may not be needed within each continental region. For example, trials may show
that classification accuracy remains unaffected if the annual cycle is represented by a
subsample of three or four months. Or, perhaps only a subset of variables within each 32-
day composite will be required. In any event, we may predict that the choice of months or
variables will vary from continent to continent.

3.1.1.2 Land-Cover Change Parameter

The Land-Cover Change parameter will rely primarily on the change vector technique,
which will compare pixel-by-pixel the temporal development curve of a set of biophysical
and spatial indicators derived from MODIS data. These features are described more fully
in section 3.1.1.1.1 above. The change vector technique represents the seasonal dynamic
of these indicators by a point in a multidimensional space, with each dimension of this
space corresponding to a time-composited observation. Changes in the accumulated value
and seasonal dynamic of the indicator between successive years are quantified by a change
vector between successive points in the temporal multidimensional space. The magnitude
of change is reflected by the length of the vector, while its direction in multitemporal
measurement space indicates the timing and nature of the change.

Where a long history of change observations exists, a useful reference standard for
change may be a ‘best-conditions’ year, a monthly time trajectory that is constructed for
every pixel from an analysis of its historical performance over the period of record. In this
process (Lambin and Ehrlich, 1996a), the best ecological conditions that occurred
throughout the observation period are identified for each pixel by selecting the maximum
(or minimum) value of an indicator (e.g., maximum NDVI) for each month in the annual
cycle. A best-conditions year is thus constructed that takes into account the ecological and
edaphic constraints of every pixel. Any land-cover change can then be expressed with
reference to this time trajectory. Note that the reference year will need to be updated at
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regular intervals to integrate new observations, thus allowing for a better categorization of
change processes over multiannual periods. This approach has proven very useful in
characterizing land-cover change in Africa using AVHRR GAC data for the 1982-1991
period (Lambin and Ehrlich, 1996b).

Although the change vector technique is the best documented approach thus far to
land-cover change at coarse resolution, we also plan to examine other approaches to
change characterization. These alternative approaches are identified in section 2.2.5.

3.1.2 Mathematical Description of Algorithm

3.1.2.1 Land Cover Parameter

3.1.2.1.1 Feed-Forward Networks Trained by Backpropagation

While there are a variety of different neural network models, most remote sensing
applications have used a supervised, feedforward structure employing a backpropagation
algorithm that adjusts the network weights to produce convergence between the network
outputs and the training data. In overview, the neural network classifier is composed of
layers of “neurons” that are interconnected through weighted synapses. The first layer
consists of the classification input variables and the last layer consists of a binary vector
representing the output classes. Intermediate, “hidden” layers provide an internal
representation of neural pathways through which input data are processed to arrive at
output values or conclusions.

In a supervised approach, the neural network is trained on a dataset for which the
output classes are known. In this process, the input variables are fed forward through the
network to produce an output vector. During a following backpropagation phase, the
synapse weights are adjusted so that the network output vector more closely matches the
desired output vector, which is a binary-coded representation of the training class. The
network weights, or processing element responses, are adjusted by feeding the summed
squared errors from the output layer back through the hidden layers to the input layer. In
this fashion, the network cycles through the training set until the synapse weights have
been adjusted so that the network output has converged, to an acceptable level, with the
desired output. The trained neural network is then given new data, and the internal
synapses guide the processing flow through excitement and inhibition of neurons. This
results in the assignment of the input data to the output classes. The basic equations
relevant to the backpropagation model are presented in Fischer and Gopal (1992).

3.1.2.1.2 Adaptive Resonance Theory Neural Networks

Although the feed-forward back-propagation neural network has been shown to better
or at least equal the performance of conventional statistical classifiers in remote sensing
applications (see section 2.2.2), this architecture can require lengthy training and can
sometimes fail to converge. A newer neural network architecture, relying on adaptive
resonance theory (ART), lacks these disadvantages and shows significantly higher
accuracies (Gopal et al., 1994). Neural networks employing adaptive resonance theory are
designed to be stable enough to preserve significant past learning while still allowing new
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information to be incorporated in the neural network structure as such information appears
in the data input stream. The description of ART networks below follows Carpenter and
Grossberg (1987a, 1987b), Carpenter (1989), Carpenter et al. (1991a, 1991b, 1992), and
Gopal et al. (1994).

The ART-1 module of Carpenter and Grossberg demonstrates the essential features of
adaptive resonance theory. This module is actually a learning structure that organizes the
patterns it receives into a consistent set of responses. In this way, its function is similar to
that of an unsupervised classifier. The ART-1 module consists of a two-level network. An
input signal in the form of a binary vector (F0) is received by the first level (F1) and
propagated forward to the second level (F2) by a set of weights that constitute the long-
term memory. A further feature of the F2 level is that the nodes at the F2 level interact
through lateral inhibition. The result is to produce an F2 pattern vector in which only the
node associated with a single class is significantly activated. This vector is then propagated
backward to the F1 level where it is compared with the original input vector. If the two
patterns are close, “resonance” occurs and long-term memory is altered to include the new
observation.

If the two patterns differ significantly, the ART module enters a search mode. In this
mode, the prior active node at the F2 level is first disabled. The signal is then propagated
forward once again, but since the prior active F2 node is disabled, a second pattern
associated with a different class node is selected. This pattern is then propagated back to
the F1 level and compared with the input vector as before. If the fit is acceptable, then
resonance proceeds and the system has “learned” a new input pattern. If not, the second
F2 node is disabled and another attempt to find a good match is made. If cycling in this
fashion does not eventually produce a good match, the system adds a new F2 node and
associates the input pattern with it in long-term memory.

Further developments of adaptive resonance theory to neural networks by Carpenter
and co-workers include ART-2 and fuzzy ARTMAP. ART-2 modifies ART-1 so that it no
longer requires a binary input vector, but instead may accept analog inputs. (A form of
scaling is applied to the inputs first, however.) Note that neither ART-1 nor ART-2 are
associative memory systems, in which associations between pattern pairs are learned with
the ability to be recalled. Fuzzy ARTMAP, however, is such a system.

In fuzzy ARTMAP, two ART-2 modules (ARTA and ARTB) are connected together
through an associative learning network called a map field (ARTAB). In the training phase,
input vectors and desired output vectors are presented as pairs to F2 and ARTB
respectively, and the outputs of the ART modules are associated by the map field ARTAB.
If a mismatch occurs, F2 is placed in search mode to find, and possibly learn, a better
choice. Or, a new node may be added to the F2 layer in F2 that is a better predictor of the
desired output. As noted previously in section 2.2.2, the fuzzy ARTMAP classifier has
performed very well in applications to monthly-composited AVHRR LAC data as well as
to Thematic Mapper data.
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3.1.2.1.3 Decision Tree Classifiers

Decision tree classifiers recursively partition data into related or homogeneous
subregions based on a set of decision rules. The structure of the tree consists of a root
node, intermediates nodes or splits, and terminal nodes (leaves). Input data at the root
node is subdivided at decision nodes based on univariate and/or multivariate decision rules
(Brodley and Utgoff, 1995). Although decision trees have only recently been applied to
remote sensing data, they offer tremendous potential for classification and feature
selection. Decision trees can either be applied independently or coupled with other
analytical procedures in hybrid classification models.

Research into the applicability of decision trees to MODIS Land Cover continues to be
conducted at both site and global scales. Lloyd (1990) used a binary decision tree classifier
using multitemporal phenological indexes or metrics derived from a time series of NDVI
data to stratify vegetation phenology classes. A time series dataset was used to examine
feature selection and land cover classification for a MODIS-like scenario in the semiarid
environment of the Walnut Gulch/Cochise County site (Borak and Strahler, 1999. The
dataset consisted of numerous input fields derived from an intra-annual sequence of seven
Landsat TM acquisitions, along with ancillary elevation information. A decision tree
classifier was used to select the features that provided the best descrimination among land
cover types. Three classification algorithms were then applied to the reduced feature
space: the decision tree itself, a maximum-likelihood classifier and an artificial neural
network (Fuzzy ARTMAP). Results indicated that decision tree classifiers are useful tools
for extracting essential features in data sets of high dimensionality, and that the neural
network performed best on the reduced set of features.

Friedl and Brodley (1997) applied univariate, multivariate and hybrid decision trees to
the global 1-degree AVHRR NDVI dataset, the Conterminous US 1-km AVHRR NDVI
dataset, and a TM data set for Lake Tahoe, California, and compared them to both linear
discriminant functions (LDF) and a maximum likelihood (ML) classification algorithm. All
three decision tree algorithms outperformed the LDF and ML algorithms on all datasets.
Hybrid trees, where different classification algorithms are used in different subtrees of a
larger tree, were superior due to their ability to better resolve complex relationships
among feature attributes and class category labels.

3.1.2.2 Land-Cover Change Parameter

The change vector analysis method of identifying land-cover change has been
presented by Lambin and Strahler (1994b). This method assesses change by calculating the
distance between the location of an indicator variable in multitemporal space at two
different time periods on a per-pixel basis. For example, if the indicator were monthly
composited NDVI values, and it was desired to assess change between two subsequent
years, the difference between the location of the NDVI vector in 12-dimensional (monthly)
space for the two years would be calculated. The magnitude of this difference, or change
vector, is representative of the magnitude of the change, and the direction of the change
vector relates to the type of change. The type of change is then characterized by the
segment of the multidimensional temporal space into which the vector has moved. This
approach (1) allows quantification of the intensity of change; (2) allows classification of
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the type of change; (3) is based on a historical database for each pixel; and(4) is
mathematically simple.

More explicitly, the temporal state of the land cover can be represented by the location
of a variable such as NDVI in a multidimensional space, where each dimension represents
one of the time periods for which the variable was measured. For example, the location of
the variable can be represented by the vector:

p′′(i,y) = [I(t1)  I(t2)  . . . I(tn)]

where p′′ (i,y) is the multitemporal vector for pixel i in processing period y, I are the
values of the variable of interest for pixel i at time periods t1 to tn where n is the number of
time periods at which the variable was measured. The vector magnitude represents the
integral of the variable over time periods 1, 2, . . . , n and the direction of the vector
represents the seasonal pattern. Any change in the state of a pixel’s land cover between
processing periods y and z is defined by a change vector:

c(i) = p(i,z) – p(i,y)

The magnitude of the change vector is simply taken as the Euclidean distance d
between the two vectors:

d2 = c′′(i) c(i)

In work by Lambin as cited above, it has been shown that the magnitude and direction of
the change vector are related to the intensity and type of change process, respectively.

A further extension is to explore the Mahalanobis distance, dM::

d2
M = c′′(i) V-1(i) c(i)

where V(i) is a variance-covariance matrix of change vectors that quantifies the
distribution of change vectors as observed over time within a region. This distance scales
the magnitude of a vector by the variance normally observed in its direction of change. As
for the Land Cover product, Land-Cover Change will require assembling a multitemporal
data set (Figure 2).

3.1.3 Training, Testing and Validation Sites and Database

The MODIS Land Cover and Land-Cover Change Parameters require ground
information for training and validation. This information will be obtained for a network of
global test sites described in the following sections. The Land Cover and Land-Cover
Change validation and test site approach follows that developed for the MODIS Land
Team. Land Cover and Land-Cover Change also have specific needs for global sites that
can be used to train and test algorithms, and to validate map products. We are currently
completing the development and population of a set of global Validation and Test Sites
(VATS) using the System for Terrestrial Ecosystem Parameterization (STEP), a site
database developed for this purpose.
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3.1.3.1 STEP Site Database

As stated, global training and testing of algorithms, as well as land cover product
validation, require that a network of sites be developed. To meet the requirements for a
multivariable site model and database for training, testing and validation, the System for
Terrestrial Ecosystem Parameterization (STEP) was developed. STEP is a multivariable
site database framework for describing site vegetation, environment, and other biophysical
parameters. STEP is a formal model that relates multisource remote sensing, field, and
thematic data to landscape biogeophysical attributes to permit training, testing,
parameterization and validation. It provides for continuous acquisition and update of plot-
level data that can be applied to classification algorithm training, testing, and validation, as
well as to more comprehensive ecological/environmental description. It is a classification-
free approach that is appropriate at multiple scales and for multiple landscape
classifications that utilize physiognomic, functional, structural and phenologic criteria.
STEP allows for training and testing of classification algorithms, and validating map
product accuracy (Muchoney et al., 1999).

STEP is being used to create a global database of land cover test sites and associated
parameters which can also be applied to direct generation of multiple classification systems
and specific biophysical parameters. Feature extraction and parameterizing the STEP
database involves assigning labels to appropriate categories of a suite of parameters. STEP
provides for explicit description of the structural, functional and compositional
components of the vegetation and landscape tied to specific sites and plots. Its primary
purpose is to provide a comprehensive model of the land surface that can be used to train
and test algorithms and to validate land surface products. Formal sites are established and
described based on high-resolution remote sensing, ancillary and field plot data. STEP can
be used to translate multiple classification systems as an alternative to commonly used
look-up table approaches. This accommodates the wide array of classifications used by
various models to parameterize biophysical processes such as those of Biosphere-
Atmosphere Transfer Scheme (BATS) (Dickinson et al., 1993), Biome-BGC (Myneni et
al., 1997; Nemani and Running 1996; 1997; Running et al., 1994, 1995), the Land
Surface Model (LSM) (Bonan, 1996), and the Simple Biosphere models SiB (Sellers et
al., 1986) and SiB2 (Sellers et al., 1996).

The development of the global STEP test site database for Land Cover is intended
to represent the earth’s diversity of land covers and types of land cover change. Land-
Cover Change Parameter training and validation requires that the site network
represent global, regional and local change processes due to both natural and
anthropogenic factors. Change criteria include phenological class (seasonal grassland,
deciduous forest), anthropogenic (urbanization, agriculture, conversion, biomass
burning), interface (land/snow, land/water), biotic (insect and pathogen), and
hydrologic (seasonal inundation) representation. Early warning and indicator sites are
necessary for monitoring processes that may indicate climatological or other changes.
These sites include, for example, high-elevation spruce-fir forests and ecological
ecotones. A number of critical sites and “hotspots” sites are included in the network
because of their particular conservation, political, economic and/or social significance.
While site selection criteria have been defined, because of the time and expense of
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developing an independent test site database, the site selection process has also been
driven by data made available to Boston University by a number of cooperators and
data sources.

The VATS database presently includes over 1000 sites for North America and an
additional 500 sites for South America. The strategy is to develop the 400 global Core
and Confidence sites of IGBP into STEP format for the rest of the globe, to augment
these sites in Africa, Eurasia and Australia based on gaps in their distribution to be
ready for global training, testing and validation within 5 months following EOS AM-1
launch.

3.1.3.2 Site Data Sources and Institutional Cooperation

A global site network is an ambitious endeavor that requires cost sharing and inter-
institutional cooperation. Test sites are promoted to take advantage of cost savings by
using data that have already been generated and where research is continuing. This site
network is being coordinated within MODLAND, EOS and the larger remote sensing
community, especially IGBP. Boston University is working with other MODLand teams in
developing site data.

One important source of test site data is the Landsat Pathfinder Global Land Cover
Test Sites (GLCTS) program, for which data are now being assembled at the EROS Data
Center. GLCTS was proposed by an informal network of researchers largely connected to
MODIS, EOS and/or the IGBP. Each site is known to have some associated ground
information on local land cover or related data. For each GLCTS site, a database of
remotely-sensed imagery that includes Landsat MSS, TM, and AVHRR data is being
assembled by the GLCTS program. Landsat images include both recent and historical
acquisitions (for change detection). AVHRR images include LAC data in a 500-km by
500-km window centered on each test site; they are being acquired as part of the data
acquisition phase for the AVHRR global 1-km dataset, and acquistions are expected to
continue into the future along with this program. Databases have been completed at eight
sites. The present list of GLCTS test sites includes 130 locations globally, although there
is a commitment now for only database development at some 30 sites. Although the
completed sites are data-rich, there is no consistency in the level of land cover information
that has been derived at each site. It will therefore be necessary to extract land cover data
for the GLCTS sites to make them usable for MODIS Land Cover training and validation.

Another source of test sites is the IGBP-DIS Global 1-km Land Cover Database
project. IGBP is completing validation of the IGBP AVHRR global land cover
classification using statistical sampling based on over 400 remote sensing Core
observation sites. These data will be available and may be easily applied to validation of
the MODIS product, even though they are not designed specifically for that purpose.
Boston University, as a contribution to IGBP Global Land Cover, has been able to expand
the initial Core sites into a set of global confidence sites to provide local-scale land-cover
information for both methodological development and accuracy assessment of the 1-km
land cover database (IGBP-DIS, 1995). The IGBP Confidence Site characterization
approach is an adaptation of the STEP model, therefore supporting continuity with Boston
University’s global STEP site database.
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Other sources of test sites are international field experiments, such as the Boreal
Ecosystem-Atmosphere Study (BOREAS) in boreal Canada; the SALT transect (Savanna
on the Long-Term) in West Africa; the French test sites for the POLDER (Polarization
and Directional Earth Reflectance) instrument, MODLERS/Bigfoot sites and SAFARI
2000.

As part of the larger MODLand, MODIS, and EOS activities, a network of fully-
instrumented tower sites is being developed. We will use these sites for pre-launch
evaluation as they become available and for continuous observation in the post-launch
era. They will be visited during field campaigns in order to map and parameterize local
land cover types and observe change. Additional intensive study sites we have identified
include BOREAS, Olancho, Honduras; the Yucatan; Glacier National Park; Plumas
National Forest; Harvard Forest LTER; Hubbard Brook LTER; Virginia Coast LTER;
and Hapex-Sahel. Five of these were selected as high-priority, regional STARs for
ASTER data validation: Olancho, Honduras; Shenandoah National Park/George
Washington National Forest, Virginia USA; Burkina Faso, Africa; Cockpit Country,
Jamaica, Caribbean; northern Canada; and Mosquitia, Nicaragua/Honduras.

3.1.4 Prelaunch Algorithm Development and Validation

3.1.4.1 Prelaunch Land Cover Algorithm Development and Validation

The MODIS land cover team has undertaken a number of studies to validate the
classification procedure and algorithms for the land cover and land-cover change products.
The following are abstracts of these studies with references to publications relating to
these studies. The MODIS Land Cover/Land-Cover Change Product Accuracy and
Sensitivity Summary is also provided as Appendix A.

• Central America Terrestrial Ecology Study
While mapping vegetation and land cover using remotely sensed data has a rich
history of application at local scales, it is only recently that the capability has
evolved to allow the application of classification models at regional, continental
and global scales. The development of a comprehensive training, testing and
validation site network for the globe to support supervised and unsupervised
classification models is fraught with problems imposed by scale, bioclimatic
representativeness of the sites, availability of ancillary map and high spatial
resolution remote sensing data, landscape heterogeneity, and vegetation
variability. The System for Terrestrial Ecosystem Parameterization (STEP), a
model for characterizing site biophysical, vegetation and landscape parameters to
be used for algorithm training and testing and validation, has been developed to
support supervised land cover mapping. This system was applied in Central
America using two classification systems based on 428 sites. The results indicate
that 1) it is possible to efficiently generate site data at the regional scale, 2)
implementation of a supervised model using artificial neural network and
decision tree classification algorithms is feasible at the regional level with
classification accuracies of 75-88 percent, and 3) the STEP site parameter model
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is effective for generating multiple classification systems and thus supporting the
development of global surface biophysical parameters (Muchoney et al., 1999).

• Walnut Gulch MODIS-Data Simulation Study Using Decision Tree and Neural
Networks
In this study, a time series data set was used to examine feature selection and land
cover classification for a MODIS-like scenario in a semiarid environment (Borak
and Strahler, 1999). The data set consisted of numerous input fields derived from
an intra-annual sequence of seven Landsat TM acquisitions, along with ancillary
elevation information. A decision tree classifier selected the features that were
most discriminatory, with respect to land cover, from the full measurement space.
Three classification algorithms were applied to the reduced feature space: the
decision tree itself, a maximum-likelihood classifier and an artificial neural
network (Fuzzy ARTMAP). Results indicated that decision tree classifiers are
useful tools for extracting essential features in data sets of high dimensionality,
and that the neural network classified the reduced set of features with highest
accuracies.

• Global 1-Degree Classification Studies
Using an annual sequence of composited Normalized Difference Vegetation
Index (NDVI) values from AVHRR data set composited to 1 degree, DeFries and
Townshend (1994) classified eleven global land-cover types with a maximum
likelihood classifier. Gopal et al. (1999) classified the same data using fuzzy
ARTMAP. Their findings are (1) when fuzzy ARTMAP is trained using 80
percent of the data and tested on the remaining (unseen) 20 percent of the data,
classification accuracy is more than 85 percent compared with 78 percent using
the maximum likelihood classifier; (2) classification accuracies for various splits
of training testing data show that an increase in the size of training data does not
result in improved accuracies; (3) classification results vary depending on the use
of latitude as an input variable similar to the results of DeFries and Townshend;
and (4) fuzzy ARTMAP dynamics including a voting procedure and the number
of internal nodes can be used to describe uncertainty in classification. This study
shows that artificial neural networks are a viable alternative for global scale land
cover classification due to increased accuracy and the ability to provide additional
information on uncertainty.

• Vegetation Mapping Using Neural Networks At TM Scales
We recently developed and tested a new system for mapping lifeforms and
species associations based on fuzzy ARTMAP that directly integrates Landsat
spectral data, terrain variables and geographic location. This approach requires
many training sites, but once the data are collected, the processing stream is
greatly simplified compared to the current operational methods. Our tests of this
approach compare fuzzy ARTMAP results with those obtained by the current
operational methods (i.e., an “expert map”) for the Sierra National Forest of
eastern California. The results demonstrate that fuzzy ARTMAP (without editing)
performs better than an expert unedited map and almost as well as an edited
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expert map for Sierra Forest data. Fuzzy ARTMAP is also far superior to expert
unedited map in predicting life form. The unedited expert map uses spectral data
in predicting lifeform with an accuracy of 64 percent compared with the fuzzy
ARTMAP’s 78 percent for this same input, and 85 percent when terrain data are
added. The neural network accuracies are almost as good as the expert edited
map, while the expert edited map requires months of labor to make, requiring
field work to identify natural regions and development of a set of terrain-based
rules to derive species associations.

The voting strategy used in ARTMAP simulations can provide a measure of
confidence and uncertainty for each prediction. Fuzzy ARTMAP uses an internal
voting strategy which can be used to provide a measure of the confidence of its
predictions. Our tests show that the accuracy of predictions is closely related to
this confidence measure. This output from Fuzzy ARTMAP can be used in two
ways. First, it can be used as a guide to highlight the areas where manual editing
will be most effective. Second, it can provide an “uncertainty map” which can be
used in conjunction with the vegetation map.

An application of the mixture algorithm in the Plumas National Forest of eastern
California shows that fuzzy ARTMAP produces the best overall results. It is able
to make accurate estimations of proportions of hardwood and conifer cover in
sites where brush is not present in the understory. ARTMAP classification does
better than maximum likelihood. It is able to predict 89 percent of total
predictions within 20 percent range of accuracy while maximum likelihood
predicts 74 percent within the same range. The RMS error for all classes (conifer,
hardwood and barren) is less for fuzzy ARTMAP. We also tested the use of linear
mixture models in this context using both an “exterior” and an “interior” set of
spectral endmembers. ARTMAP outperforms these models by a substantial
amount. ARTMAP predicts 96 percent of total sites within the 20 percent range
compared with 76 percent for the exterior and 83 percent for the interior mixture
models. Uncertainty information is provided by the fuzzy ARTMAP voting rule.
Different ordering of the input set causes fuzzy ARTMAP to make different
predictions. The voting process allows combination of the results from varying
predictions. This process can be thought of as a committee of independent experts
where the members of the committee vote during testing so that the predicted
class is the one that receives the largest number of votes from the committee. This
approach has two advantages. First, it can improve the classification accuracy, as
indicated by some of our recent studies on land cover mapping at regional scales
(Carpenter et al., 1997). Second, it provides a way of evaluating uncertainty in
the results on a pixel-by-pixel basis.

• Decision Tree Studies
Decision tree classifiers present an alternative to neural networks in preparing the
land cover product. Friedl and Brodley (1997) recently tested the performance of
decision tree algorithms for land cover classification. Three different decision tree
algorithms were tested on several different training data sets. The decision tree
algorithms included univariate decision trees (UDT) (Breiman et al., 1984),
multivariate decision trees (MDT) (Brodley and Utgoff, 1995) and hybrid decision
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trees (HDT) (Brodley, 1995). Univariate decision trees test a single feature at each
internal node, whereas multivariate decision trees use linear combination tests to
define the splitting criteria at each internal node. Hybrid decision trees employ
multiple classification algorithms within the framework of a single decision tree
structure. The performance of these algorithms was evaluated using three different
datasets with different spatial, spectral and temporal properties. The first was the
1-degree AVHRR composited NDVI dataset of Los et al. (1994) that was used by
Townshend and DeFries (1994) and Gopal, Woodcock and Strahler (1996) as
described above. Training labels for these data were derived by DeFries and
Townshend (1994). The second dataset tested was derived from the 1990
Conterminous US AVHRR Dataset compiled at EROS Data Center (Eidenshink et
al., 1992) and consists of a time series of maximum NDVI values during each
month of the growing season in 1990. Class labels were assigned to these data by
reclassifying the labels provided by Loveland et al. (1991) to the IGBP
classification (see section 2.3). The data used here were extracted at 10,000
random locations and exclude water bodies. The final dataset was composed of a
random sample of roughly 2000 values of raw Landsat Thematic Mapper (TM)
data acquired over a forested area surrounding Lake Tahoe, California. These data
were extracted from a single image and include all TM bands except band 6
(thermal). Class labels were assigned using a combination of automated
classification procedures that incorporated the use of ancillary data, manual
labeling using field data, and aerial photography (Woodcock et al., 1994).

To evaluate the classification performance of each of the decision tree algorithms
identified above, a set of ten cross-validation runs were performed using each
classification algorithm to classify each of the datasets. To do this, each dataset
was split into three parts: 70 percent training, 20 percent pruning, and 10 percent
testing. In this way, the trees were estimated, pruned, and evaluated using
independent data for each step. This procedure was repeated to generate ten
versions of the data with different random combinations of training, pruning, and
testing data. To provide a baseline of the performance of the decision tree
algorithms a parallel cross-validation procedure was performed using both a
maximum likelihood and linear discriminant function classifier. Results show that
the decision tree algorithms consistently and significantly outperformed more
conventional classification algorithms. Although for some classes maximum
likelihood gave more accurate results, superior performance on the larger classes
gave decision trees an overall accuracy advantage of 7-9 percent. It is notable that
classification accuracies are in general lower for the NDVI 1-km and TM datasets
than for the NDVI 1-degree dataset. At 1-km resolution, the data are significantly
noisier than at one degree. The NDVI 1-km dataset suffers from multidate
registration inaccuracies and is also not fully corrected for atmospheric effects. In
contrast, the 1-degree dataset is filtered and smoothed (Los et al., 1994) as well as
averaged over a much larger grid cell size. Note that both multidate registration
and atmospheric correction will be much better for MODIS than for the AVHRR
NDVI 1-km dataset. Noise and mixed pixels are also characteristic of the TM
dataset (Woodcock et al., 1994).
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In addition to this assessment of decision tree performance, Brodley and Friedl
(1996) developed a consensus filter technique based on machine learning theory
to filter training data for mislabeled observations. Given the importance of
training data quality to the performance of both neural net and decision tree
classification algorithms, this method is of potentially high utility for the
implementation of operational land cover and land-cover change algorithms.
Specifically, the technique provides an automated and objective method for
tagging mislabeled observations in training data that are input to supervised
classification algorithms (Brodley, 1995). To test this procedure, we simulated
labeling errors in training data by randomly introducing error between classes that
are likely to be confused in real data (e.g., grassland versus wooded grassland).
To do this we used the training dataset generated by DeFries and Townshend
(1994) for 1o the AVHRR composited NDVI dataset (Los et al., 1994). Results
from this analysis show that the procedure is capable of detecting and removing
fairly substantial levels of noise in training data. Note also that the procedure is
amenable to use in training the classifier for the MODIS land cover product, since
it operates on training data rather than the entire global dataset.

3.1.4.2 Land-Cover Change Parameter

Prelaunch and early postlaunch algorithm development of the Land-Cover Change
Parameter has three primary objectives: (1) to validate the multitemporal change vector
technique at broad spatial scales (continental) and over a decade or more of observations;
(2) to refine the logic for land-cover change characterization; and (3) to define the linkage
between the land-cover change technique and ancillary data (thematic information and
high resolution information) for a more detailed monitoring of “hot spots” or areas of
rapid change. This work extends the research of Lambin and Strahler (1994a, 1994b) on
the application of change vector analysis to AVHRR LAC data from west Africa.

The objectives above require a long time series of high temporal-frequency satellite
observations. Only AVHRR GAC data meet these requirements. There are two important
sources of GAC data for this purpose. First is the AVHRR Pathfinder dataset, comprised
of 12 years of daily cloud-screened GAC data that are calibrated, corrected for ozone
absorption and Rayleigh scattering, and registered to a map projection. Another important
time sequence of AVHRR data is the GAC dataset of the African continent produced by
the Monitoring Tropical Vegetation Unit of the European Union’s Joint Research Center
in Ispra, Italy. This dataset has already been used extensively in developing the change-
vector technique by former Associate Team Member Eric Lambin (Lambin, 1996; Lambin
and Ehrlich, 1996a, 1996b, 1997).

It is important to note that because the spectral bands of the AVHRR are limited,
these data do not provide the full information content of the MODIS database. However,
AVHRR data do provide the temporal signal that is expected to be most important in the
detection and characterization of land-cover change. In the prelaunch period, algorithm
development activities are focusing on understanding and exploiting the information
content of the AVHRR temporal signal.
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Specific near-term activities in algorithm development of the Land-Cover Change
Parameter include: (1) continuing analysis of change vectors over ten years of African
NDVI and surface temperature data; (2) validating the change magnitude and change
processes that are detected using a variety of sources, such as FAO reports, FEWS
Bulletins, NCAR Climate Impact Maps, published reports on land-cover change, and high
resolution data analysis; and (3) defining typical temporal patterns of land-cover change to
establish the basis of a future classification system for land-cover change processes.

The first and second of these near-term activities are already underway. For example,
the utility of change vectors and other temporal metrics of land-cover change has been
examined in sub-Saharan Africa (Borak, 1999). The metrics are derived from AVHRR
Pathfinder data over sixteen test sites for which fine spatial resolution remote sensing data
are available. Change is modeled in the fine-resolution data as a function of the coarse
spatial resolution metrics without regard to the type of change. Results indicate that
coarse spatial resolution temporal metrics (1) relate in a statistically significant way to
aggregate changes in land cover, (2) relate more strongly to fine spatial resolution change
metrics when including a measure of surface temperature instead of a vegetation index
alone, and (3) are most effective as land-cover change indicators when various metrics are
combined in multivariate models.

Since the change vector approach is appropriate for detecting subtle forms of change,
the relationship of change vectors to interannual climate variability is also of interest. Over
the continent of Africa, change vectors have been calculated from AVHRR Pathfinder
data on a seasonal time step. The indicators that are employed in the change vector
analysis are NDVI, Ts and the Ts/NDVI ratio. Comparison of these change vectors to
measures of interannual climate variability shows that they relate both qualitatively and
quantitatively, that stronger metric/climate couplings exist for some vegetation types than
for others and that lag effects are also important (Borak, 1999). The qualitative
comparisons are drawn by examining meteorological records from the period of data
acquisition (1981–1991). Quantitative information consists of monthly Southern
Oscillation Index data averaged over three month intervals during the same period of
record as the satellite data.

3.1.5 Sources of Error and Uncertainty

Sources of error include preprocessing operations associated with development of the
land cover product as well as problems with pre-processing of data provided to the land
cover process. Two phases of processing are necessary for generation of the MODIS
Land Cover Product: data compositing and data analysis. In the compositing phase, the
32-day composited databases are assembled from MODIS Level 3 inputs. In the analysis
phase, a year of 32-day composites are processed by the land cover and land-cover change
algorithms to produce the quarterly output products.

3.1.5.1 Inputs

Both the Land Cover and Land Cover Type Change Parameters rely on the 32-day 1-
km gridded database MOD12M which accumulates appropriate MODIS Level 3 products.
Inputs include (1) EOS land/water mask; (2) Nadir BRDF-Adjusted surface Reflectances
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(NBARs) at a 1-km spatial resolution in the MODIS Land Bands (1-7) (MODIS Product
MOD43B4); (3) daily spatial texture derived from Band 1 (red) at 250-m resolution; (4)
directional reflectance information derived from the MODIS BRDF/Albedo Product
(MOD43B1); (5) 16-day Enhanced Vegetation Index (EVI) (MOD13); (6) 8-day snow
cover at 500m (MOD10A); (7) 8-day Land Surface Temperature (LST) at 1 km MOD11);
and (8) ancillary terrain elevation information. The data are accumulated over a 32-day
time period to produce a globally-consistent, multitemporal database on a 1-km grid as
input to classification and change characterization algorithms. The ability to meet
validation objectives may be influenced by changes in the input data. The input data can
affect the land cover product because of the nature of the data or by affecting algorithm or
process. This influence can be minimized if the algorithms are robust and promote
multivariable, convergence-of-evidence approaches rather than relying on a single input
parameter. At any rate, the nature and validity of input data must be monitored for its
impact on land cover product validity.

3.1.5.2 Clouds

Persistent cloud cover will impede acquisition of high quality time trajectories of
reflective or thermal data for use in characterizing land cover types. Even for a
compositing period of 32 days, lack of cloud-free data will be a significant problem at
some times of year in some regions, especially the humid tropics. Cloud screening occurs
in the production of the products that are input to the composited database. Therefore, the
problem for the Land Cover Product should be one of missing rather than cloud-
contaminated data. The classifier will then have to work on the reduced time trajectory of
available features.

3.1.5.3 Registration

Misregistration may be another significant source of error. Since each MODIS
measurement is geolocated, this problem amounts to uncertainty in true geolocation
(geolocation error is discussed in section 2.4).

3.1.5.4 Gridding and Binning

Multidate registration of Level-2 products to the Level-3 grid will be influenced by
errors in geolocation. Excluding blunders, these are likely to be larger at larger scan
angles. BRDF-fitted reflectance will be an improvement over selection by maximum value
or by simply selecting against large view zenith angles. Output at 1-km resolution instead
of the nominal 250-and 500-m resolutions for surface reflectance will reduce errors in
spatial overlay.

3.1.5.5 Topographic Data Error

Elevation is a key factor in geolocation of pixels. Elevation also must be
accommodated in atmospheric correction, since it influences path length as a function of
view angle. We may expect that both of these sources of error will be substantially
corrected prior to compositing in the production of input products.
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3.1.5.6 Data Dependencies

Since the Land Cover Product uses other MODIS products such as vegetation index,
snow cover and BRDF/Albedo products as well as a Land/Water Mask as inputs, its
accuracy will depend partly on the accuracies of those products. However, it is not likely
to be very sensitive to small errors in these input parameters. Based on the long history of
successful land cover classification using remotely sensed data, we expect the spectral,
spatial, temporal and directional signals to be quite robust in their information content for
land cover, given that the instrument at least approaches its signal-to-noise ratio
specifications. Because the classifier operates empirically, biases are not likely to be a
problem as they might be for algorithms that produce quantitative geophysical parameters.
Further, the accumulation process that assembles the products into the MOD12M 32-day
database will read quality flags and discard low-quality observations wherever possible.
For all data dependencies, it is necessary to track changes in inputs and their effect on
algorithms, processing, flow, and product validity. Land cover and land-cover change are
linked by the relationship of multitemporal characterization of land cover and
multitemporal discrimination and description of land-cover change. This is manifest in the
use of change detection to isolate multitemporal signal noise and change for validation of
process and algorithm, as well as characterization of land cover types and optimization of
field sampling.

3.1.5.7 Temporality

Error may be introduced when training and validation data are not temporally
coincident with MODIS observation. This can especially be a problem with detecting and
describing change. Although data aggregation and accumulation is prescribed, it will be
necessary to define meaningful temporal generalizations of land cover based on successive
observations. A further issue of temporality is assuring the temporal continuity of
algorithms and processes.

3.1.5.8 Algorithm

Within the Land Cover Parameter, errors are generated when the classification
algorithm selects the wrong class. With respect to a particular class, errors of omission
occur when pixels of that class are assigned wrong labels; errors of commission occur
when other pixels are wrongly assigned the label of the class considered. These errors
occur when the signal of a pixel is ambiguous, perhaps as a result of spectral mixing, or
when the signal is produced by a cover type that is not accounted for in the training
process. These errors are a normal part of the classification process. They can be
minimized, but not voided entirely. Although they cannot be identified on a pixel-by-pixel
basis due to processing constraints, they can be characterized in a statistical sense.

3.1.5.9 Reference Data

Reference data include both test site data and ancillary land cover and other
environmental data. The quality and availability of adequate training/validation data
derived from field sites and existing maps and tabular data is the most limiting factor to
land cover and land-cover change validation (Muchoney et al., 1996). The quality of
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reference map data is a function of their inherent locational and thematic accuracy, while
their utility may be restricted by incompatible classification systems or time of creation and
validation.

Accuracy assessment of land cover products depends on the type and accuracy of
reference (“truth”) data comprising field observation, remote sensing and collateral data
sources. For individual test sites, the utility and quality and of the ground truth will be
variable. Data utility is influenced by the classification system that is applied or parameters
that are derived for a site. Site data utility is also a function of the source data since this
impacts discrimination of features; what is observable using TM does not necessarily
translate (at least directly) into comparable MODIS-discernible features. Source data also
influence the minimum mapping unit and dimension.

The factor which primarily affects the quality of reference data is the underlying
accuracy of the ground truth classification which may not be known. The time difference
for the source data used in developing a reference dataset, the reference (presumably field-
based) date and the MODIS acquisition dates impact both utility and accuracy of test site
data.

Because factors relevant to validation vary considerably from test site to test site,
validation will require assessment of the utility and accuracy of data available at each test
site and most probably reworking site data to extract information specifically useful to
land cover and land cover change. This argues strongly for the development of a high-
resolution reference dataset that might be derived from other remote sensing sources,
standardization of classification subunits or parameters, standardization of procedures for
deriving classification subunits and parameters and development of a global sampling
scheme and associated database.

High spatial resolution imagery will be available from a number of sources including
ASTER, which will be on the EOS-AM platform with MODIS, and the Landsat-7 ETM
instrument, launched on 15 April 1999. With high spatial resolution data available, spatial
heterogeneity of the test sites and the classes they contain can be further characterized and
monitored. As a continuing data source, these instruments will also allow updating of land
cover ground truth at test sites through the EOS era. Use of collateral remote sensing
datasets such as TM and ASTER provide for a number of additional benefits of
redundancy and complementarity that can be derived using data integration and data
fusion techniques.

3.2 Practical Considerations

3.2.1 Numerical Computation Considerations

We do not anticipate problems with numerical stability and/or round-off errors.

3.2.2 Programming/Procedural Considerations

Two phases of processing are necessary for the MODIS Land Cover Product: data
accumulation and data analysis. In the accumulation phase, the 32-day MOD12M
databases are assembled from MODIS Level 3 inputs. In the analysis phase, twelve 32-day
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databases are processed by the land cover algorithm and by the land-cover change
algorithm to produce the quarterly output products.

Allowing for quality flags, average daily volume will be approximately 4.1 GB. The
processing power required is about 40 MFLOPS in order to assemble the 32-day database
in one week. This power is about that of a mid-range engineering workstation. Similarly,
in order to generate the quarterly products, about 250 MFLOPS of CPU will be required
to produce the 6 GB output databases.

3.2.3 Postlaunch Validation

3.2.3.1 Land Cover Parameter

Proper validation of a global dataset is not a simple task. Whereas validation of a
biophysical parameter might entail developing a quantitative estimate or sense for the
physical meaning of the parameter under consideration (Kahn et al., 1991), land cover
validation provides an indication or estimate of confidence that a pixel or segment has
been correctly labeled as to a thematic class. Therefore, validity is dependent on how we
define land cover classes. If the objective is to place a bounded estimate on the global per-
pixel accuracy of the classification, then a formal sample design, based on a random,
random-stratified, or systematic spatial sample, is required (Cochran, 1977). Such a
sample requires obtaining reference data at many locations on the globe. The cost of
acquiring such knowledge is therefore prohibitive, given the postlaunch resources for
validation available to the MODIS Land Team. Instead, we must turn to the test sites for
which we have high-resolution land cover information available. Because the test sites are
a biased sample, accuracy statistics derived at test sites cannot be regarded as proper
statements of global accuracy. However, if the test sites are reasonably representative of
their region as is planned, test site statistics can at least point to weaknesses and strengths
in the dataset and allow users to anticipate how errors might impact their own research.

There are several approaches to the selection of pixels for comparison. First,
accuracies may be reported by comparing the results obtained by the classifier in back-
classifying training sites. Typically, this method is used to benchmark relative accuracy of
classifiers rather than to establish a practical standard of accuracy. Given the nature of the
algorithms, they back-classify (reclassify) training data to accuracies approaching 100
percent. Therefore, it is not useful to use this jackknife approach to assess thematic
accuracy. Second, a set of test samples that is separate from training samples may be
classified. We have adopted evaluating accuracy by both splitting the site data into sets of
training and independent testing subsets based on an 80/20 train-to-test ratio by both
pixels and by polygons (sites) and reporting both accuracies (Friedl et al., 1999). Note
that for convenience in processing, training pixels are sometimes included in this set when
they comprise only a small proportion of the total test pixels. If these samples are selected
according to a proper sample design, accuracies obtained by this method can be used to
establish overall and per-class classification accuracy for the domain sampled (Green et
al., 1993). They may also be used to place bounds on areal estimates of coverage by class
within the domain (Cochran, 1977).
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Accuracy assessment has progressed through four development epochs over the last
25 years. The present stage may be described as the age of the error (confusion) matrix
(Congalton, 1994). Classification accuracy is described using tables that document errors
of commission and omission by cross-tabulating per-pixel labels output by the classifier
with labels obtained from ground truth mapping or by classification of higher-resolution
imagery (Story and Congalton, 1986). The kappa coefficient (Cohen, 1960) has become a
standard statistic to evaluate overall classification accuracy, providing a more realistic
estimation than a simple percentage agreement value. The kappa coefficient considers all
cells in the confusion matrix, providing a correction for the proportion of chance
agreement between the reference and test data sets (Rosenfield and Fitzpatrick-Lins,
1986). A Z-statistic can also be used as a pair-wise test of significance between two
techniques based on the error matrices at specified probability levels (Congalton et al.,
1983). However, it has been found that kappa overestimates the proportion of chance
agreement and consequently underestimates overall accuracy (Foody, 1992). Ma and
Redmond (1995) present an alternative statistic for assessment of overall classification
accuracy, the tau coefficient. This statistic is based on a priori probabilities of class
membership rather than the a posteriori probabilities that are the basis for kappa. Tau is
reported to better adjust percentage agreement to compensate for chance agreement, and
to be easier to calculate and interpret. As with kappa, pair-wise tests of significance may
be performed.

The confusion-table approach to accuracy assessment operates on the paradigm that
each sample can be properly labeled into a single class, both by the classifier and by the
process that establishes the ground reference (truth) data. It should be recognized that
classification accuracy assessment may contain either conservative or optimistic bias.
Simple interpretation of confusion matrices and related statistics without consideration of
these error sources in the reference data may generate misleading conclusions (Verbyla
and Hammond, 1995; Hammond and Verbyla, 1996). Sources of conservative bias in
accuracy assessment (i.e. factors that reduce observed accuracies) include registration
errors between reference and test data sets, use of a minimum mapping unit that is larger
than the size of pixels in the classified image (Verbyla and Hammond, 1995), and the
assumption that the reference data are perfectly correct (Congalton and Biging, 1992;
Congalton and Green, 1993). Sources of optimistic bias (i.e. factors that increase observed
accuracies) include sampling from training sites, non-independence of reference and
training data and sampling from homogenous blocks of pixels (Hammond and Verbyla,
1996).

Accuracy statements about the product clearly depend on the accuracy of the ground
truth. For individual test sites, the quality of the ground truth will be variable. Factors
affecting the quality of the ground truth include (1) the underlying accuracy of the ground
truth classification; (2) the units of land cover classification at the test site and their
correspondence with those of the Land Cover Parameter; and (3) the difference in time
between the acquisition of ground truth data and the remotely sensed data that are
classified. Because these factors will vary from test site to test site, validation will require
an individualized assessment of the characteristics of the product within ecoregions.

As an assessment of the accuracy of each land cover product, we will embed in each
tile the confusion table for the continental region to which it belongs. The confusion table
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will be generated from unseen training sites and thus be the most conservative estimate of
accuracy. In addition, we will provide as ancillary data a set of within-class error variances
derived from the cross-tabulations that can be used to set standard errors on areal
aggregations, as well as a discussion and interpretation of accuracy issues and areal
aggregation statistics that is geared to applications of the land cover parameter.

This validation strategy is similar to that adopted by the IGBP-DIS Land Cover
Validation Working Group for the IGBP-DIS Global Land Cover Database (IGBP-DIS,
1995; see section 2.3.2). IGBP has undertaken analyses of classification accuracy and
other characterization activities at a network of core and confidence sites (see section
3.1.3). The IGBP confidence sites use a subset of Boston University’s STEP site
parameters to characterize land cover at their 400 global sites. We are compiling the
confidence site data into our global STEP site database for use in training, testing and
validation.

The IGBP-DIS global land cover sites were selected by a formal sample design. At the
confidence sites, high resolution imagery (TM or SPOT) were photointerpreted to validate
the label of each pixel selected for sampling. The core and confidence site analyses were
conducted in October 1998. Boston University is leading the development of the land
cover confidence sites, providing this global dataset as a web resource.

Another important factor in test site analysis for product validation is that high spatial
resolution imagery will be obtainable from two sources: ASTER, which will be on the
Terra platform with MODIS, and the Landsat-7 ETM instrument, which was launched in
April 1999 in a near-simultaneous orbit with Terra. With high spatial resolution data
available, spatial heterogeneity of the test sites and the classes they contain can be readily
characterized and monitored. Further, as a continuing data source, these instruments will
allow updating of land cover ground truth at test sites through the EOS era.

3.2.3.2 Land-Cover Change Parameter

Validating land-cover change maps is a complex task since it requires the observation
of land-cover characteristics before and after an area is affected by a process of change.
Our global test site development initiative (see Section 3.1.3) is producing an a priori list
of test sites for land-cover change validation based on a sampling, deforestation fronts,
ecotones and ecological gradients, record of current change processes and hot spots
where human pressure is high and where it is likely that land-cover conversion will take
place. In most areas, a time interval of several years is necessary to detect significant land-
cover changes and to be able to characterize accurately change processes and impacts.
The case of the African Sahel is exemplary: several authors have shown that the
interannual climatic variability in this region is such that only time series longer than a
decade would allow for detection of any secular trend in land-cover change (Tucker et al.,
1991; Hellden, 1991). In addition to developing a sampling scheme for validating land-
cover change, we are increasing our efforts in site-level analysis of change processes using
AVHRR, Landsat and MODIS-simulated data.
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3.2.4 Quality Control and Diagnostics

Quality control follows the MODLand Quality Assurance (QA) Plan. The plan outlines
run-time and post run-time QA procedures for MODLand standard products. The QA
data fields consist of those mandated by ECS, those common to all MODLand products,
and product-specific metadata. Run-time QA information is generated in the production
environment, and is either spatially explicit (per-pixel) or global (per-tile) in scope.
Mandatory MODLAND QA is generated on a per-pixel basis. The 8-bit flag associated
with MOD12Q1 consists of 3 cloud-state bits, 1 bit describing product usefulness and up
to 4 additional bits for product summary as specified by the science team member
responsible for each product. In the case of MOD12Q1, the land/water mask is retained in
this portion of the QA.

Run time quality assurance data specific to the Land Cover Parameter is given
separately as an 8-bit Land Cover Assessment data field and primarily conveys confidence
in the label of each grid cell. Per tile accuracy tables and statistics are maintained in the
Core Metadata as additional parameters. Run time QA issues related to the Land-Cover
Change Parameter are still in early research stages owing to the post-launch status of the
data product. Post run time QA is generated at the SCF and at the Land Data Operational
Product Evaluation (LDOPE) facility, a centralized QA installation. The main role of the
LDOPE is to carry out routine QA evaluation, while the SCF staff handles situations that
require greater scientific expertise. When data fail any quality test at the DAAC or
LDOPE (as defined by either ECS or the SCF), the SCF will be notified by the DAAC or
LDOPE. At that point, SCF staff may elect to examine the data at the SCF, or in
cooperation with LDOPE personnel. Results of post run time QA are then sent to the
DAAC, where they are included as part of the mandatory ECS metadata.

3.2.5 Exception Handling

Exception handling, which covers data generated during infrequent events such as
platform maneuvers, eclipses, and the like, will primarily be the responsibility of the input
products. Thus, these events will produce missing data fields.

3.2.6 Data Dependencies

Since the Land Cover Product uses Level-3 products as inputs, its accuracy will
depend partly on the accuracies of those products. However, it is not likely to be very
sensitive to small errors in these input parameters. Based on the long history of successful
land cover classification with remotely sensed data, we expect the spectral, spatial,
temporal and directional signals to be quite robust in their information content for land
cover, given that the instrument at least approaches its signal-to-noise ratio specifications.
And, because the classifier operates empirically, biases are not likely to be a problem, as
they might be for algorithms producing quantitative geophysical parameters. Further, the
accumulating process that assembles the products into MOD12M will read quality flags
and discard low-quality observations wherever possible.
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3.2.7 Output Products

Output from the Land Cover Product and the Land-Cover Change Product are
encoded as categorical variables that are stored as byte data. We anticipate releasing the
first Land Cover Parameter at 15 months after launch, revising the product quarterly
thereafter. Prototype products will, however, be generated beginning with the availability
of MODIS data. The first Land-Cover Change Parameter will be released 27 months after
launch, based on two years of monthly composites. As in the case of Land Cover,
prototype change products will be produced as data become available. The Land Cover
GCM Product is especially tailored for global climate modeling at coarse resolutions. It
will be provided on a quarterly basis and will contain the proportions and areal estimates
associated with each land cover class within a 1/4-degree grid cell. Accompanying each
byte will be approximately 15 bytes of attribute information which consist of entries such
as quality flags and data-field characteristics. The global data volume per parameter is
about 8.8 GB.

4. Constraints, Limitations, Assumptions

Constraints, limitations and assumptions are discussed in appropriate sections ad
seriatim in the preceding text of this document. For example, both the Land Cover and
Land-Cover Change Parameters require properly registered and resampled data that are
cloud-screened and atmospherically corrected (sections 3.1.1.1.1, 3.1.5).
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Appendix A. Product Accuracy and Sensitivity Document

(Prepared 09/17/98)

Product accuracy and sensitivity summary: MODIS Land Cover/Land-Cover Change

PRODUCT NAME: Land Cover/ Land-Cover Change

PRODUCT NUMBER: MOD12

Coverage: global land

Spatial/temporal characteristics: 1000m and 1/4 degree resolution, 96-day (quarter-annual)

Science team member and point of contact:

Alan H. Strahler, Team Member, Boston University: alan@bu.edu

Douglas M. Muchoney, Associate Team Member, Boston University: muchoney@bu.edu

SHORT DESCRIPTION of the product

The Land Cover/ Land-Cover Change products comprise:

MOD12, parameter number 2669, land cover type, 1-km, 96-day

MOD12, parameter number TBD, land cover type - Climate

Modeler’s Grid (CMG); 1/4 degree, 96-day

MOD12, parameter number 2671, land-cover change, 1-km, 96-day



60 MOD12 ATBD Version 5.0—5/1/99

The Land Cover and Land-Cover Change 1-km Parameters rely on a 1-km 32-day gridded
database assembled from MODIS Level 3 products produced on 8- or 16-day cycles:

 Input                       Source                                        Description                     Timestep

 BRDF MODIS BRDF       shape information 32-day

 location MODIS Geolocation       latitude/longitude     fixed

 land/water  USGS Land/Sea Mask     terrestrial/            fixed

initially (eventually based on marine boundary fixed

on previous quarterly MODIS

Land Cover)

 reflectance  MODIS Reflectance       BRDF-adjusted,   32-day

7-channel nadir

reflectance

 snow/ice     MODIS Snow/Ice snow and ice 32-day

 surface temp. MODIS Surface Temp.     maximum                 16-day

texture        MODAGG                  max texture based       32-day

on 250m channel 1

 topography     USGS DEM                slope aspect,  slope      fixed

gradient, elevation

 vegetation     MODIS VI                EVI                     16-day

   index

The 1-km inputs are aggregated into monthly datasets, and a rolling 12-month set of over 250
features is used to generate the quarterly Land Cover Product. Classification is based on applying
supervised artificial neural network and decision tree classifiers to the inputs using site-based
training labels. The land cover types are based on the 17-class IGBP classification system. Global
ecosystem and vegetation types will also be provided. The 1-km Land Cover data will also be
generalized to the CMG 1/4 degree grid.

The 1-km Land-Cover Change parameter is designed to quantify subtle and progressive land
surface transformations, as well as instantaneous changes such as land cover conversions. The
algorithm for the Land-Cover Change Parameter combines analyses of changes in multispectral/
multitemporal data vectors with models of vegetation change mechanisms to recognize both the
type and intensity of change.
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Optimal conditions for derivation from EOS data:

Most (or all) input features available for 12 monthly periods

Non-optimal conditions:

Reduced features due to cloud cover, instrument failure, or problems with the algorithms and
production of other MODIS products used as input.

Other caveats:

A global dataset of sites is required that can be used to train the classification algorithms and
to validate the global land cover product

Physical quantity 1: Land Cover type @ 1-km

THEORETICAL ACCURACY: TM and NOAA AVHHR data indicate that classification
accuracies of 70-90 % for IGBP land cover types may be expected under optimal conditions.

PRELAUNCH VERIFICATION:

Pre launch verification is based on testing our classification procedure using operational
algorithms and code on 1-km AVHRR data and on simulated MODIS data. Validation data are
a network of sites which are described by their primary structural, physiognomic, physical and
morphological attributes. Development of this Validation and Test Sites (VATS) database
allows for quantified, statistical measure of classification accuracy based on contingency table
analysis and measures of agreement. Boston University has developed site data for supervised
classification and accuracy of Central America, and will complete a comprehensive testing and
validation site database for North America by mid-October 1998.



62 MOD12 ATBD Version 5.0—5/1/99

ALGORITHM VALIDATION:

We have performed a number of studies to test algorithm performance using remote sensing
data.

Global 1-degree AVHRR Dataset

We applied neural network, decision tree and maximum-likelihood classifiers to the 1-degree
AVHRR FASIR dataset using a train and test site database developed by DeFries and Townshend
(1994). These train/test data are based on agreement of the global land cover and vegetation maps
of Matthews (1983), Olson (Olson and Watts 1982; Olson et al., 1983) and Wilson and
Hendersen-Sellers (1985). Table 1 provides the results of these tests with the neural network and
maximum-likelihood classifiers using 80% of the global pixels to train and 20% to independently
test results, while the decision tree classifiers used 70% to train, 20% to prune the tree and 10% to
test. In addition to the monthly composited AVHRR NDVI data, the neural network classification
was performed with and without latitude as an ancillary variable.

Multiscale Testing

The performance of the decision tree and maximum-likelihood classification algorithms was
tested using three different datasets with different spatial, spectral and temporal properties. The
first was a 1-degree composited AVHRR dataset (Los et al.,1994), using training labels developed
by DeFries and Townshend (1994). The second dataset was derived from the 1990 Conterminous
US AVHRR Dataset compiled at EROS Data Center (Eidenshink,1992) and consists of a time
series of maximum monthly NDVI values during each month of the growing season in 1990. Class
labels were assigned to these data by reclassifying the labels provided by Loveland et al. (1991) to
the IGBP classification system. The data were extracted at 10,000 random locations exclusive of
water bodies. The third dataset was composed of a random sample of approximately 2000 values
of raw Landsat Thematic Mapper data acquired for a forested area near Lake Tahoe California.
Class labels were assigned using techniques reported in Woodcock et al. (1994). Overall results
are summarized in Table 2, with the ARTMAP neural network classifier only applied to the 1-
degree dataset.

Central America Study

Multitemporal NOAA-AVHRR satellite data were used to apply supervised classifications
based on artificial neural network, decision tree, and maximum-likelihood classifiers. The AVHRR
data of USGS were monthly composited using maximum NDVI to remove cloud and topographic
effects and extreme off-nadir pixels (Holben 1986; Eidenshink and Faundeen 1994), as well as
scan angle dependence of radiance (Duggin et al., 1982). Plot/site data were obtained through
feature extraction at some 450 sites based on Landsat TM, Satellite pour l’Observation de la Terre
(SPOT), AVHRR, and existing vegetation and land cover data. Table 3 provides a summary of
classification results based on five random samples of the site data into training (80%) and testing
(20%) subsets.

The results indicate that regional, continental and global classification and validation are
feasible using our site database. Accuracies of greater than 80% were achieved for most classes
and should improve significantly using 7-band MODIS data.
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POSTLAUNCH VERIFICATION:

Postlaunch verification will be based on independent training and testing, and contingency
table analysis to quantify classification accuracies using our global test site database. In addition,
we have intensive study sites that will provide detailed information on classifier performance.

Physical quantity 2: Land-Cover Change

THEORETICAL ACCURACY:

The thematic accuracy target for land-cover change is to equal or exceed 80% overall.

PRELAUNCH VERIFICATION:

Pre launch verification is based on site-based testing, especially in the southwest US and
Africa. Because this product depends on at least two years of global-scale, 7-band, well-registered
data, it cannot be easily prototyped in the prelaunch period.

POSTLAUNCH VERIFICATION:

Post launch verification will be based on independent training and testing, and contingency
table analysis to quantify classification accuracies using our global test site database. In addition,
we have intensive study sites that will provide detailed information on classifier performance for
change detection.
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Table 1. Classification Results for AVHRR Composited NDVI 1o Dataset (percent)

Land Cover 
Category

total 
train/test 

pixels

ARTMAP 
with 

Latitude

ARTMAP 
without 
Latitude

Maximum-
Likelihood

Univariate 
Decision 

Tree

Multi-
variate 

Decision 
Tree

Hybrid 
Decision 

Tree
Broadleaf 
evergreen forest 628 97.6 91.3 84.0 95.7 96.1 96.3
Coniferous 
evergreen 
forest/woodland 320 68.8 53.1 69.0 81.0 80.0 78.1
High latitude 
deciduous 
forest/woodland 112 86.4 90.9 100.0 85.4 92.7 99.1
Tundra 735 95.9 94.6 86.0 94.5 94.7 95.1
Mixed deciduous 
and evergreen 
forest/woodland 57 63.6 72.7 40.0 34.0 56.0 58.0

Wooded grassland 212 88.1 45.2 95.0 82.9 86.7 86.7
Grassland 348 80.0 68.6 35.0 70.6 66.2 70.3
Bare ground 291 100.0 89.7 100.0 95.2 95.6 97.3
Cultivated 527 74.3 79.5 81.0 76.6 78.5 80.2
Broadleaf 
deciduous 
forest/woodland 15 0.0 0.0 100.0 0.0 0.0 0.0
Shrubs and bare 
ground 153 80.6 77.4 100.0 84.7 86.0 92.7
Pixel total 3398
Overall accuracy 86.6 76.7 78.8 85.6 86.4 87.7

Table 2: Multiscale Classification Results
Classification Method NDVI 1o NDVI 1-km TM
Univariate decision tree 85.6 71.0 75.2
Multivariate decision tree 86.4 71.7 75.9
Hybrid decision tree 87.7 80.1 76.0
Linear discriminant functions 78.7 51.7 70.6
Maximum-likelihood classifier 78.8 62.2 69.0
Fuzzy ARTMAP neural network 85.7 na na
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Table 3. Central America Classification Results (% classification accuracy)

IGBP Class class name
train/test 
pixels

DTC: non-
boosted

DTC:    
boosted

Gaussian 
ARTMAP

Fuzzy 
ARTMAP

1 Evergreen needleleaf forest 1515 74.87 88.18 84.49 79.00
2 Evergreen broadleaf forest 3575 84.55 96.15 91.55 79.00
3 Deciduous needleleaf forest
4 Deciduous broadleaf forest 370 63.82 81.97 75.41 83.90
5 Mixed forest 845 65.55 82.18 72.31 76.90
6 Closed shrublands 125 54.15 58.40 46.40 83.00
7 Open shrublands 335 65.66 83.61 82.69 93.00
8 Woody savannas 470 65.12 82.46 77.66 85.80
9 Savannas 60 34.25 37.58 15.00 78.10
10 Grasslands 845 70.48 85.38 78.22 81.20
11 Permanent wetlands 800 65.92 78.17 72.00 80.60
12 Croplands 1950 70.37 86.96 83.69 68.00
13 Urban and built-up 265 57.25 77.69 71.32 82.90
14 Cropland mosaics 365 68.62 83.42 76.99 91.70
15 Snow/Ice
16 Barren or sparsely vegetated 35 29.83 81.83 28.57 72.20
17 Water bodies 440 98.48 98.89 97.05 95.40

accuracy 74.79 88.16 82.77 79.30


